Aquinói Szent Tamás: A világ örökkévalóságáról című könyvében két írás található. Az egyikben Aquinói Szent Tamás vizsgálja meg azt a kérdést filozófiai szempontból, hogy teremthette e Isten örökkévalónak a világegyetemet. Ezt a különféle eretnek nézetekkel szembeni harc érdekében tette. Végül arra a következtetésre jut, hogy nincs ellentmondás a világ örökkévalósága, és az Isteni teremtés lehetősége között. A második írás Geréby György tollából való, aki a világ örökkévalóságáról szóló középkori vitákat mutatja be részletesen.
Ezek közül, ami nekem leginkább felkeltette az érdeklődésemet az nem mással, mint az idővel kapcsolatos. Bonaventura írta le először az idő végtelenségének paradox természetét. Véleménye szerint a végtelenhez, és így a végtelen időhöz is, hiába adunk hozzá valamennyit, mégsem lesz nagyobb. Viszont, ha a világ örökkévaló, akkor a világnak nincs kezdete, tehát végtelen idő óta kell léteznie, és ez a végtelen mennyiség minden nappal több lesz, tehát ellentmondáshoz jutottunk.
Felhoz ezen kívül olyan érvet is a végtelen hosszú idő létezésének lehetetlenségére, hogy a végtelent nem lehet végighaladni, viszont, ha a világ örökkévaló, akkor végtelen idő óta létezik, és ilyen értelemben nem lehetett volna eljutni a mai naphoz. Még két ehhez hasonló érvet is felhoz, nem is ezek az érdekesek. A legérdekesebb John Peckham érvelése.
Ha az idő öröktől fogva létezik, akkor mind a múlt, mind pedig a jövő irányában végtelennek kell tekintenünk. Jelöljünk ki egy korábbi A és egy későbbi B pontot az időben! Az A előtti múltat nevezzük A-múltnak, az A utáni jövőt A-jövőnek. A B előtti múltat B-múltnak, a B utáni jövőt B-jövőnek. Gondoljuk végig ezeknek a dolgoknak a természetét. Ha két dolog egyenlő, akkor abban az esetben, ha valamely másik dolog nagyobb az egyiknél, akkor a másiknál is nagyobbnak kell lennie. Továbbá, ha valamelyik nagyobb valaminél, akkor a másiknak is nagyobbnak kell lennie.
Elmondhatjuk azt is, hogy az a dolog, amely tartalmaz egy másik dolgot, és még valamivel több is annál, annak nagyobbnak kell lennie a másiknál, és ahhoz képest valamiféle egészet kell alkotnia. Továbbá elgondolható, hogy ugyanabból az oszthatatlan pontból kiinduló végtelen dolgok egyenlők. Ezek után a következő érvet hozhatjuk fel: A-múlt és A-jövő nyilvánvalóan egyenlő egymással, hiszen egymás mellé helyezve őket mind a kettő egyforma nagyságú kell, hogy legyen.
Értelemszerűen B-múltnak is egyenlőnek kell lennie B-jövővel. B-múlt viszont nagyobb A-múltnál, illetve A-múlthoz képest valamiféle egészet alkot. Így nagyobb A-jövőnél. B-múlt illetve B-jövő viszont egyenlők. Így B-jövő nagyobb, mint A-jövő, azonban A-jövőt valamiféle egésznek kell tekintenünk, tehát nagyobbnak kell tekintenünk B-jövőnél, és így ellentmondásba jutottunk, ha feltételezzük, hogy az időnek nincs kezdete. Ebből következően nem meglepő, hogy később Georg Cantor-nak a modern halmazelmélet lángelméjű megalkotójának a végtelenséggel kapcsolatos metafizikai vizsgálódásait a neotomisták karolták fel.
Oscar Cullmann: Krisztus és az idő című könyvében az őskereszténység idő fogalmát elemzi. Szerinte az őskeresztények a világtörténelmet, amibe az égi történelem is beletartozik nemcsak a földi, üdvtörténetnek fogták fel, és úgynevezett kairoszokra és aiónokra osztották őket. A kairosz valamilyen kitüntetett időtartamot jelent az üdvtörténeten belül, amikor valamilyen fontos dolog történik az üdvtörténet szempontjából Isten üdvtervét követve. Ilyen például Krisztus születése és élete. Az aión pedig világkorszakokat jelent az üdvtörténeten belül. Három világkorszak különíthető el: a teremtés előtti világkorszak, a földi történelem korszaka, végül a végítélet utáni világkorszak, amikor a lelkek visszakerülnek Istenhez a mennybe, vagy kárhozatra a pokolba.
Cullmann hangsúlyozza, hogy az őskeresztények a túlvilági létezést csak időként tudták elképzelni, méghozzá végtelen időként, és nem időtlenségként, mint a görögök. Ugyanis a görögök szerint a túlvilágon, vagyis az örökkévalóságban nem végtelen időben élnek a lelkek hanem időtlenségben, ahol megszűnik létezni az idő. Ez a gondolat idegen volt az őskereszténységtől Cullmann szerint.
Sőt a könyvében leírtakból azt veszem ki, hogy a földi történelmet is csak végtelen időként lehetett elképzelni az őskereszténység gondolatvilágában, de ez nyilván képtelenség, mert a földi történelem egyszer véget ér a keresztény eszkatalógia szerint. A Cullman által leírt üdvtörténet szerkezete tehát úgy néz ki, hogy két végtelen szakasz fog közre egy véges szakaszt. Ez a gondolat talán felhasználható Peckham paradoxonának feloldásához, hiszen ha jobban megnézzük, akkor láthatjuk, hogy ha a teret, vagy az időt végtelenként fogjuk fel, akkor pont olyan a szerkezete, mint Cullmann üdvtörténeti elképzelésének.
Ennek szemléltetésére jelöljünk ki egy pontot a végtelen térben, és induljunk el két egymástól ellenkező irányba. Logikailag kikövetkeztethetjük, hogy ha a tér végtelen, akkor bármeddig haladunk a kijelölt ponttól vett két egymástól ellenkező irányba, mindig végtelen hosszú út marad hátra mindkét irányba, és az általunk mindkét irányba megtett út soha nem lesz végtelen hosszú, hanem véges marad. Tehát ebből kifolyólag a végtelen tér szerkezetének látszólag valóban olyannak kell lennie, mint a Cullmann által felvázolt üdvtörténet szerkezetének, ahol két végtelen rész fog közre egy véges részt. Azonban itt megint paradoxonhoz jutottunk, mert ha a tér végtelen, akkor a tér azon többi részének is léteznie kell, amit a kijelölt ponttól kiindulva még nem jártunk be, és soha nem is járhatunk be, hiszen az előbb megállapítottuk, hogy akár meddig jutunk előre a kijelölt ponttól, az általunk megtett útnak mindig végesnek kell maradnia, a még előttünk lévő útnak pedig mindig végtelennek.
Tehát ha az általunk még meg nem tett út ugyanúgy létezik, akkor a két végtelen szakasz által közrefogott véges szakasznak egyszerre kell végtelennek és végesnek lennie, mert végtelen ideig haladhatunk a kijelölt ponttól vett két ellentétes irányba, azon az úton, ami még hátra van, csak ezt az utat soha nem járhatjuk be, és a hátralévő út mindig végtelen marad. Ennek az újabb paradoxonnak a feloldására határoljuk el egymástól az úgynevezett osztott és osztatlan végtelent. Osztatlan végtelen például a végtelen tér, vagy a végtelen vonal, hiszen ezeknek a részei egymással teljes egységet alkotnak, a részeik egymástól el nem különíthetőek, csak ha képzeletben elmetszük őket egymástól. Az osztott végtelenre példák a számok. Számokból végtelen sok van ugyan, de ezek egymástól jól elkülöníthető részekre tagolódnak, mint például: 1, 2, 3, és így ezeknek a számoknak a halmaza is osztott végtelennek tekinthető.
A két végtelen által közrefogott véges szakaszt, amelyről az előbb megállapítottuk, hogy egyszerre véges és végtelen, mint egyszerre végest és végtelent nehéz úgy megragadnunk, mint osztatlan végtelent. Azonban ha osztott végtelenként gondolunk rá, akkor már könnyebb elképzelnünk. A két végtelen szakaszt, ami ezt az egyszerre véges és végtelen szakaszt közre fogja nevezzük abszolút végtelennek. Ezekről egyenlőre nem tudunk fogalmat alkotni. Az egyszerre véges és végtelen szakaszt pedig relatíve végtelennek. Ez nem tévesztendő össze a filozófia fogalomtárából ismert potenciálisan végtelennel, ami minden határon túlterjedőt jelent. Mert a relatíve végtelen nem minden határon túlterjedő, hanem egyszerre ténylegesen végtelen és véges, hiszen egyszerre magában foglalja az összes határt, amin a potenciálisan végtelen túlterjed.
A relatíve végtelen szakaszt jobban el tudjuk képzelni egyszerre végesként és végtelenként, ha nem osztatlan végtelenként képzeljük el, hanem olyan osztott végtelenként, ami nem más, mint a tér összes véges méretének halmaza. Így tehát egyszerre véges marad, mert ez a halmaz csak véges méreteket tartalmaz, ugyanakkor végtelen is, mert ezekből a véges méretekből végtelen sok van a halmazban. Így tehát az újonnan keletkezett paradoxonunkat feloldottuk is az eredetit is, hiszen ott éppen az volt a paradoxon, hogy a végtelen hosszú osztatlanul végtelen szakaszok egyenlők egymással, vagy egymásnál is nagyobbak annak ellenére, hogy véges fogalmaink szerint csak az egyiknek kellene nagyobbnak lennie a másiknál.
Az osztott végtelenek világában pedig, vagyis a modern halmazelméletben megszokott az a jelenség, hogy két végtelen egyenlő egymással annak ellenére, hogy nagyobbnak kellene lennie egyiknek a másiknál. A halmazelmélet tudományának mai állása szerint két halmaz elemeinek száma egyenlő, ha elemeiket egyértelműen meg tudjuk feleltetni egymásnak. Ez a halmazelmélet szerint igaz mind a véges, mind pedig a végtelen halmazokra. Csak azt kell bizonyítani, hogy ha két végtelen halmaz elemeit egymáshoz rendeljük az egy-egy egyértelmű leképezés. Így például könnyen bebizonyítható, hogy az a leképezés, amelynek során a természetes számokat kétszeresükhöz (vagy éppen minden természetes számot a feléhez) rendelünk, egy-egy egyértelmű leképezés.
1 → 2
2 → 4
3 → 6
4 → 8
5 → 10
6 → 12
7 → 14
8 → 16
És így tovább. Eszerint tehát éppen annyi páros szám van, mint amennyi természetes szám. Vagyis a természetes számok halmaza egyenlő számosságú annak egyik részhalmazával. Ugyanezzel a módszerrel könnyen bebizonyítható az is, hogy a természetes számok halmaza egyenlő számosságú a racionális számok halmazával. Kiszámítható, hogy melyik természetes számnak melyik racionális szám felel meg.
2 → 1/1
3 → 1/2
4 → 2/1
5 → 1/3
6 → 3/1
7 → 1/4
8 → 2/3
9 → 3/2
10 → 4/1
Ezzel tehát Peckham paradoxonát feloldottuk. Azonban megmarad a kérdés, hogy milyen szerkezetű a két abszolút végtelen. Talán azok is egy relatíve végtelenből, és két abszolút végtelenből állnak, ahogy az így keletkezett négy abszolút végtelen is további két abszolút végtelenből és egy relatíve végtelenből áll? Ez csak játék volt a gondolatokkal. Felmerül a kérdés, hogy egyáltalán létezhet e a relatív végtelent közrefogó két abszolút végtelen, hiszen ahogy a fejtegetésünkből kiderül, a relatív végtelennek elméletileg minden létezőt magában kell foglalnia az általunk vizsgált végtelen térben. Lehet, hogy ha létezik is, ennek a létezésmódnak csak valamiféle fizikán túli jelleget tulajdoníthatunk, mint például túlvilág?
Felhasznált irodalom:
Turay Alfréd: - Kozmológiai antropológia – A katolikus hittudományi főiskolák jegyzetei, Magánkiadás, Szeged, 1987. http://mek.oszk.hu/08700/08794/html/index.htm
Aquinói Szent Tamás: A világ örökkévalóságáról, Jószöveg Műhely Kiadó, 1998.
Cullmann, Oscar: Krisztus és az idő - Az őskeresztény idő- és történelemszemlélet, Hermeneutikai Kutatóközpont, 2000.
Nincsenek megjegyzések:
Megjegyzés küldése