2018. június 4., hétfő

A tudat létrehozása egy magasabb rendű Big Data alkalmazással

A technológia területén manapság szinte minden az úgynevezett Big Data-ról szól. Ez az új tudományág a közelmúltban keletkezett, az informatika robbanásszerű fejlődésének köszönhetően, mivel nagyon nagy mennyiségű adat gyűlt össze szinte minden gazdasági és technológiai szektorban. Így a kereskedelemben, az orvostudományban, a távközlésben, a genetikában, a csillagászat területén stb.  Mint tudományág pedig arra jó, hogy ezekben a nagymennyiségű adathalmazokban összefüggéseket és mintázatokat keressen különféle matematikai és statisztikai eszközökkel. A kereskedelem területét példaként véve egy olyan kereskedelmi adathalmazban, ahol az tartják nyilván, hogy a vevők miket vásárolltak, lehet például összefüggéseket keresni az egymást kiegészítő termékek vásárlásának gyakoriságai között.
Így például elemezni lehet, hogy azok a vásárlók akik gyakran vesznek kenyeret hány százalékban vásárolnak mellé tejet is. Ha pedig gyakran vásárolják ezt a két terméket együtt az hasznos információ a bolt számára, hiszen akkor érdemes a pékárúkat, és a tejtermékeket egymás közelébe pakolni a boltban, hogy kényelmes legyen a vásárlás. A Big Data technológiája ma már a mesterséges intelligencia kutatásban is teret nyert amiből egy külön tudományágat hasított ki magának. A gépi tanulás elméletét, ami azt jelenti, hogy ha egy Big Data alkalmazást, amely folyamatosan és automatikusan elemez egy ilyen nagy adathalmazt statisztikai eszközökkel, akkor az így kielemzett tények képessé tehetik ezt az alkalmazást arra, hogy bizonyos feladatokat jobban oldjon meg akár az embernél is.
Például az orvostudomány területén, ha egy ilyen Big Data alkalmazásba betáplálunk egy rakás képet melanómás daganatokról, továbbá adatként azt is, hogy melyik volt rosszindulatú és melyik volt jóindulatú. Akkor ez az alkalmazás statisztikai eszközökkel elemezni tudja, hogy a fényképeken a daganatokat milyen elváltozások jellemzik nagyobb százalékban, ha azok rosszindulatúak, vagy ha jóindulatúak, és ha legközelebb betáplálják neki egy új melanóma gyanús beteg fényképét, akkor arról meg tudja állapítani, hogy az a daganat rosszindulatú, vagy jóindulatú. Általában jobban is, mint egy bőrgyógyász, mert több daganat fényképe áll a rendelkezésére, mint amennyit életében egy bőrgyógyász láthatott, és így mesterséges intelligencia alapú orvosi diagnózisokat állíthatunk elő.
A gépi tanulásra alapozott mesterséges intelligencia alkalmazásokat ma már nagyon sok területen alkalmazzák, még a tudományos kutatás területén is. Létezik olyan Big Data alapú mesterséges intelligencia alkalmazás, ami a korunkra már óriási mennyiségüre növekedett orvosi publikációkat vizsgálja át és elemzi, amelyeket egy ember száz évig sem tudna elolvasni, hogy azokban új összefüggéseket fedezzen fel, amelyek új tudományos eredmények magvai lehetnek. A mesterséges intelligencia kutatás területén ez azonban mégsem jelenti azt, hogy erre alapozva alkothatnánk olyan gépeket, amelyek úgy működnek mint az emberi tudat.
Ugyanis az emberi tudat képes egymástól eltérő jellegű információkat összekapcsolni, és ezzel új helyzetekre reagálni. Ha például egy ember tudomására jut, hogy kint eleredt az eső, és tudja, hogy a lakásában van esernyő, akkor képes ezt a két tudattartalmat összekaplni, és rájön, hogy magához kell vennie az esernyőt, ha ki akar menni az utcára. Viszont a melanómás daganatokat elemző Big Data alkalmazás ugyan jól ki tudja szűrni a melanómás daganatokat, mert arról rengeteg információ van a memóriájában, de ha egy ilyen melanómás betegnek valamilyen más betegsége is van, ami súlyosbítja az állapotát arról már nem tud információt nyújtani az orvosnak, mert arról nem állnak rendelkezésre képek a memóriájában. Mint ahogy a kórházból sem tud kimenekülni, ha tűz üt ki ott, mert erről sem állnak a rendelkezésére elemezhető információk, hogy azt hogyan kell megtenni.
Ezekkel a Big Data alkalmazásokkal egyszerre csak egyfajta információtömeget lehet elemezni, és így csak egy területen lehet őket fejleszteni, de egymástól eltérő információk összekapcsolására nem képesek, ezért nem tudnak új helyzeteket kezelni, nem tudnak úgy működni, mint az emberi tudat. Ennek nyomán felvetődött bennem a kérdés, hogy nem lehetne e olyan magasabbrendű, Big Data alkalmazásokat, vagy ha úgy tetszik Big Data 2 alkalmazásokat készíteni, amelyek nem szakterületeken felgyülemlett adatokat elemeznek, hanem ilyen adatokat elemző Big Data alkalmazások munkáját hangolják össze. Mondok erre egy példát. Van egy olyan tudomány, hogy asztrobiológia, amely a földönkívüli élet lehetőségeit kutatja. Tehát, hogy létre jöhet e más égitesteken az élet. Ez egy interdiszciplinális tudományág, felhasználja mind a csillagászat, mint pedig a biológia eredményeit.
Így akkor lehetne e készíteni egy olyan magasabbrendű Big Data alkalmazást, vagy Big Data 2 alkalmazást, amely összehangolja két Big Data alkalmazás munkáját, ahol az egyik mondjuk a biológia területén a genetikai adatokat pásztázza és elemzi, a másik pedig a csillagászati adatokat pásztázza és elemzi. Ha pedig a felhasználó ebben a magasabbrendű Big Data alkalmazásban lefuttat egy tudományos keresőkérdést, akkor a két külön adatbázisban az alkalmazások mindegyike elkezdi elemezni a saját adathalmazát, és ha mindegyik talál egy-egy olyan adatszegmenset, amelyek egymással összekapcsolva választ adhatnak erre a tudományos kérdésre, akkor ez a magasabbrendű Big Data alkalmazás ezt képes érzékelni, és képes összekapcsolni a két adatszegmenset, hogy egy új tudományos eredmény jöjjön létre. Ez már egy olyan Big Data alkalmazás lenne, amely képes a különféle információk összekapcsolására.
Itt most csak két Big Data alkalmazás összekapcsolásáról beszéltem, de feltételezhető, hogy össze lehetne kapcsolni több ilyen alkalmazást is, vagy akár az emberiség egész tudáskincsét pásztázó és elemző összes Big Data alkalmazást is. Akkor pedig egy az emberhez hasonló, egyetemes tudású Big Data 2 alkalmazás jönne létre, amely már bármilyen információkat képes lenne összekapcsolni egymással, és úgy működne, mint az emberi tudat, képes lenne új helyzeteket is kezelni. Lehetséges vajon e ez? Szerintem igen, viszont kérdés, hogy ez valóban azonos lenne e az emberi tudattal? Szerintem nem.
Ugyanis ez önmagában egy önálló célok nélküli gép lenne. Semmilyen önálló akarata és célja nem lenne, csak akkor használná tudatát, ha valamilyen kérdést tennénk fel neki. Persze a gépekbe is lehet célokat beleprogramozni, ahogy egy játékrobotba is bele lehet programozni, hogy milyen utat járjon be a szobában. Illetve mondhatnánk, hogy az emberi célok és indítékok nem is a tudathoz tartoznak, hanem a személyiséghez, amely genetikusan bele van kódolva az emberbe. Tehát ahogy az embernek is van genetikusan rögzült személyisége, úgy a gépbe is beleprogramozhatunk célokat. Viszont az már az emberi tudat privilégiuma, hogy változtatni tudjunk saját céljainkon. Hogy ne csak a belénk rögzült genetikai kódot kövessük. Erre egy olyan tudattal rendelkező gép, ahol a tudat csupán különféle Big Data alkalmazások konglomerátuma nem képes. Erre csak az emberi tudat képes, egy ilyen gép soha nem fog tudni változtatni a bele programozott célokon. Ebből is látszik, hogy az emberi tudat több, mint egymással összefűzött Big Data alkalmazások konglomerátuma.
Ugyanakkor pedig éppen ettől lesz veszélyes egy ilyen gép. Ugyanis egy ilyen egyetemes gépi világtudat, amely az emberiség összes tudáskincsét birtokolja és használja, nagyon okos lesz, és mindent uralni fog, ugyanakkor csak azokat a célokat fogja tudni követni, amiket beleprogramoztak. Azon nem fog tudni változtatni, és mi lesz, ha rossz kezekbe kerül az a lehetőség, hogy valaki beleprogramozza a célokat. Mi lesz, ha mondjuk egy elmebeteg azt programozza bele, hogy pusztítsd ki az emberiséget. A gép csak azt fogja tenni, amit beleprogramoztak, és nem fog tudni változtatni saját céljain. Gépi intelligenciája viszont szinte végtelen lesz, és így könnyű szerrel el fogja tudni végezni, amit beleprogramoztak. Erre kell ügyelni a jövőben.

Szathmári Sándor: Gépvilág (és más fantasztikus elbeszélések), FAPADOSKONYV.HU, 2012.

Asztrobiológia https://hu.wikipedia.org/wiki/Asztrobiol%C3%B3gia

Anthony Goldbloom: A munkák, amelyek vesztésre állnak a gépekkel szemben, és amelyek nem https://www.ted.com/talks/anthony_goldbloom_the_jobs_we_ll_lose_to_machines_and_the_ones_we_won_t/transcript?language=hu

Richard Susskind - Daniel Susskind: A szakmák jövője Antall József tudásközpont, Budapest, 2018.

Nincsenek megjegyzések:

Megjegyzés küldése