Először is forma kérdését kell megválaszolnunk ehhez pedig egy másik tudományhoz: a geometriához és a matematikához kell hozzányúlnunk, amelyek olyan térbeli objektumokkal foglalkoznak, mint a pont a vonal, vagy a test, illetve a halmazok. A halmazelmélet tudományának mai állása szerint két halmaz elemeinek száma egyenlő, ha elemeiket egyértelműen meg tudjuk feleltetni egymásnak. Ez a halmazelmélet szerint igaz mind a véges, mind pedig a végtelen halmazokra. Csak azt kell bizonyítani, hogy ha két végtelen halmaz elemeit egymáshoz rendeljük az egy-egy egyértelmű leképezés. Így például könnyen bebizonyítható, hogy az a leképezés, amelynek során a természetes számokat kétszeresükhöz (vagy éppen minden természetes számot a feléhez) rendelünk, egy-egy egyértelmű leképezés:
1 → 2
2 → 4
3 → 6
4 → 8
5 → 10
6 → 12
7 → 14
8 → 16
és így tovább a végtelenségig. Eszerint tehát éppen annyi páros szám van, mint amennyi természetes szám. Vagyis a természetes számok halmaza egyenlő számosságú egyik részhalmazával. Ugyanezzel a módszerrel könnyen bebizonyítható az is, hogy a természetes számok halmaza egyenlő számosságú a racionális számok halmazával. Kiszámítható, hogy melyik természetes számnak melyik racionális szám felel meg:
2 → 1/1
3 → 1/2
4 → 2/1
5 → 1/3
6 → 3/1
7 → 1/4
8 → 2/3
9 → 3/2
10 → 4/1
és így tovább a végtelenségig. Cantor bizonyította be a matematikatudomány mai állása szerint, hogy a valós számok nagyobb számosságúak mint a természetes számok. Ezt a következő gondalatmenettel tette meg: „Vegyük a 0 és 1 közötti valós számokat, tizedesjegyekkel kifejezve (például: 0,47 936 421…) úgy, hogy a tizedesvessző után minden számnak végtelen sok számjegye van. Ha vége van a tizedesjegyeknek, akkor nullákkal folytatjuk. Tegyük fel, hogy a valós számokat sorba lehet állítani, és így kölcsönösen egyértelműen meg lehet feleltetni a természetes számokkal. Ekkor tehát minden valós számot ebben a formában lehetne leírni.
0, A1 A2 A3 A4 …
0, B1 B2 B3 B4 …
0, C1 C2 C3 C4 …
Most próbáljunk meg új számot létrehozni Az első számjegy más lesz, mint A1, a második számjegy más lesz, mint B2, a harmadik számjegy más lesz, mint C3 és így tovább. Így egy új, 0 és 1 közötti valós számhoz jutottunk, de oly módon, hogy az különbözik a teljesnek feltételezett valós számok listájának minden egyes tagjától. Tehát ellentmondáshoz jutottunk. Mindebből az következik, hogy lehetetlen felsorolni a valós számokat. Ebből a gondolatmenetből Cantor bizonyítottnak látta, hogy a valós számok nagyobb számosságúak a természetes számoknál. A természetes számok számosságát elnevezte megszámlálhatóan végtelennek, az annál nagyobb valós számok számosságát pedig megszámlálhatatlanul végtelennek.3
A pontra a matematikusok azt mondják, hogy az nem 0 méretű, hanem végtelenül kicsi. Ez érdekes gondolat, de meg is lehet cáfolni. A következőkben leírandó számoknál a (...) mindig a számjegyek végtelen ismétlődését jelentik. Pl. 1,999... azt jelent, hogy a 9-es végtelen sokáig folytatódik a tizedes jel után.
Tehát akkor vegyünk egy ilyen végtelen hosszú valós számot:
„1,9999999...
Szorozzuk meg 10-zel, az eredmény:
19,9999999....
Mivel a 9-esek a végtelenbe folytatódnak ezért a 10-zel való szorzás után is a végtelenbe fognak folytatódni.
Akkor ebből a számból vonjuk ki az eredeti számot.
Vagy ha úgy tetszik a szám 10-szereséből kivonjuk a szám 1-szeresét ezzel megkapjuk a 9-szeresét:
19,9999999.... - 1,99999999... = 18
A tizedes vessző utáni 9-esek mindkét számnál a végtelenbe folytatódnak, tehát egymásból kivonva őket 0 lesz a tizedes vessző után, tehát az eredmény a kivonás után 18.
Most a 10-szeres számból vontuk ki az egyszeres számot, tehát maradt a 9-szeres számunk. Ami nem más, mint a 18.
18/9=2
Most akkor mi is történt?
Igen, jól láthatjuk az 1, 9999.... = 2.
Bármennyire is két különböző számnak tűnik, ami az egyenlőségjel két oldalán látunk a két szám matematikailag igazolva egyenlő.
Sőt továbbmegyek.
Mivel 1,999... = 2
Ha ezt a két számot kivonom egymásból akkor a józan ész szerint 0-t kellene kapnom.
Ezzel szemben az eredmény -0,00000.....1 lesz
Vagyis egy számot önmagából kivonva negatív eredményt kapok. Igaz, hogy végtelen kicsi negatív, de negatív.
Furcsa ugye?”
Ez azt sugallja, hogy létezik is olyan, hogy végtelenül kicsi, meg nem is. Azonban van itt még egy probléma is. Ha egy vonalat végtelen sokáig darabolunk, akkor pont lesz belőle, vagyis: „végtelenül kicsi”. De teljesen mindegy, hogy egy húsz centiméteres, vagy egy tíz, vagy akárhány centiméteres vonalat darabolunk, azt is végtelenszer kell darabolnunk, hogy pont legyen belőle. Viszont, ha pontból, vagyis végtelenül kicsikből akarunk vonalat csinálni nyilván akkor is végtelenül sokáig kell egymás mellé raknunk a pontokat, hiszen azok végtelenül kicsik, ha ezt megtesszük, akkor hány centiméteres lesz konkrétan a vonal? 10 vagy 20? Illetve, ha 10 centiméteres vonalat darabolunk, akkor 10, ha húsz centimétereset, akkor 20? Ez lehetetlen, mert a pont mérete mindenképpen egyforma: végtelenül kicsi, és az összerakás lépéseinek száma mindenképpen végtelen marad.
Másképp megfogalmazva: itt éppen az a paradoxon, hogy a pontot, mint végtelenül kicsit, nem lehet lefordítani a véges méretű vonalak mérhető mennyiségeire, mégis létezik, és ha ilyen pontokból vonalat akarunk összerakni végtelen lépésben, akkor mégis valamilyen konkrét, mérhető mennyiségnek kell kijönnie, amelyek egymástól különbözőek lehetnek, annak ellenére, hogy a pontokból való összerakás lépéseinek száma mindig végtelen. Ez az én olvasatomban csak úgy lehetséges, hogy a végtelenül kicsiknek, a pontoknak, amelyeknek egyforma méretűeknek kellene lenniük, mégis különböző méretűek, vagyis végtelenül sok méretben léteznek végtelenül kicsik. Vagyis, a végtelenül kicsiket valahogy mégis le lehet fordítani a véges méretekre. Vagyis a kérdés az, hogy mi határozza meg a pontoknál azt, hogy ha azokból véges méretű vonalat akarunk összerakni, akkor azok a vonalak milyen méretűek lesznek.
Tehát mind a második paradoxon, amit felvetettem azt sugallja, hogy a végtelenül kicsi vagy nem létezik, vagy többfajta méretben is létezhet egyszerre. Az első paradoxon pedig inkább azt, hogy egyáltalán nem létezik, de azért ott is felvethető, egyszerre lehet 0 is, és -0,00000.....1 is. Ha pedig ez igaz, akkor lehet akár 0,00000.....111111... is, vagy még több egyest vagy más számot is hozzáadhatunk, a végtelenségig, pontosabban a végtelen közepéig, ameddig szintén végtelen út vezet. Ugye milyen furcsa, ha a végtelentől indulva elkezdjük a 0-kat behelyettesíteni 0-nál nagyobb számokkal, a számok akkor sem fogják elérni sohasem, a 0,0-át, és lényegében mindig ugyanolyan távol maradnak 0,0-tól, mint -0,00000.....1 esetében, vagyis végtelen távolra, akárcsak, ha 0,0-tól indítanánk a számok behelyettesítését a végtelen felé. Tehát ugyanúgy végtelenül kicsi marad a szám, mégis nőni fog az értéke.
A második paradoxon szerintem feloldható. Talán lehet, hogy két fajta végtelenül kicsi létezik. Megszámlálhatóan végtelenül kicsi, és megszámlálhatatlanul végtelenül kicsi. A megszámlálhatóan végtelenül kicsi az 1/∞. A megszámlálhatatlanul végtelenül kicsi az pedig a példában szereplő -0,00000.....1, hiszen az a legkisebb valós szám, és a valós számok halmazáról Georg Cantor megállapította, hogy megszámlálhatatlanul végtelen. Tehát a megszámlálhatatlanul végtelenül kicsinek talán éppen azért változhat a mérete, lehet egyszerre nagyobb is meg kisebb is, mert megszámlálhatatlanul kicsi, tehát ahogy a nevében is benne van, nem meghatározható egyértelműen a mérete. Ez is egy lehetőség.
Tehát a kérdés az, hogy a pontok, amelyekből a vonalak felépülnek megszámlálhatóan, vagy megszámlálhatatlanul végtelenül kicsik.
Ezek szerint viszont léteznek végtelenül kicsi számok is, és ez tulajdonképpen az első paradoxont is feloldja, hiszen ha a megszámlálhatatlanul végtelenül kicsi több értéket is felvehet, akkor 0-t is felvehet. A megszámlálhatatlanul végtelenül kicsi esetében, hogy ezt el tudjuk képzelni érdemes szemügyre venni a megszámlálhatatlanság jellemzőit. Egy indiai matematikus Ranganathan ezt úgy fogalmazta meg, hogy a valós számok folytonosan, kontinuusan nyúlnak végig a számvonalon, elválaszthatatlanul összefolyva egymással. Vagy más szóval: nem létezik két olyan – egymáshoz mégoly közel álló – valós szám, amely között ne volna meghatározható további végtelen számú valós szám.
Ha ezt halljuk, és megerőltetjük vizuális képességeinket, agyunkban egy olyan képzet alakulhat ki, mintha belelátnánk egy természetes szám belsejébe, és ott, ahogy egyre mélyebben nézünk bele a természetes számba, azt látnánk, hogy a valós számok folyamatosan, egymás között szaporodnak. Igen, a megszámlálhatatlan végtelenség, valójában a megszámlálható végtelenség folyamatos önosztódása, ami azt jelenti, hogy a megszámlálhatatlanul végtelenül kicsi mérete a folyamatos önosztódással egyenes arányban csökken a megszámlálhatatlanul végtelenül kicsi méretétől lefelé. Ez talán így van a végtelenül kicsik összességének fizikai megnyilvánulásának esetében is. A végtelenül nagy méretű vonal valószínűleg végtelenül nagy méretű végtelenül kicsiket, vagyis megszámlálhatóan végtelenül kicsiket tartalmaz, ha pedig a vonal kisebb, akkor vele egyenes arányban a pontok mérete is kisebb, amelyek így már a megszámlálhatatlanul kicsi kategóriájába tartoznak. Ez is érdekes lehetőség, hogy talán a valós számokat nem egységes egészként kell elképzelni, hanem olyan objektumként, amely rugalmasan és folyamatosan teremtődik. A megszámlálhatatlan végtelenség talán olyan, mint a lét folyamatos betöltése, soha nem töltődhet be teljesen, ezért mindig tovább osztódik. Vagy talán egyszerre folyamatosan teremtődő, és statikusan egységes. Milyenek azok a végtelenül kicsi számok?
A végtelenül kicsi számokat úgy képzelhetjük el, mint a valós számok felét. Mintha a valós számok tizedesvessző után kezdődő részének végtelen sorát kettévágnánk, és a tizedesvessző utáni rész azon részéből, amelynél a tizedesvessző utáni rész végtelenedik pontja felől növekednek a számok, az egyesek vagy a kettesek, most teljesen mindegy, mert valós számokról van szó, kapnánk egy új végtelent számsort, amely az eredeti végtelen számsor közepéig tart, hiszen, ha tovább tartana, akkor már nem lenne végtelenül kicsi. Az eredeti végtelen számsor közepe után, pedig csak 0-ák lehetnek az eredeti számsoron 0,0-ig. A végtelenül kicsi számok tehát olyan valós számok, amelyeknél a tizedesvessző utáni számsoron a 0 feletti számok csak a végtelentől a számsor közepéig tartana, utána pedig 0 vannak 0,0-ig, és a számsor közepétől számítva mindkét irányba szintén végtelen a számsor.
Fritjof Capra: A fizika taója című könyvében a keleti vallások és a modern fizika kapcsolatáról ír. Erre már sokan utaltak a modern fizika művelői közül, de részleteiben még senki sem tárta fel. A keleti vallásokra (hinduizmus, buddhizmus, taoizmus) a panteisztikus szemlélet a jellemző, ahol a világ teljes egységet képez a személytelen Istenséggel, vagy ősszubsztanciával, és a tárgyi világ összes jelensége: a tér az idő, vagy az anyag csupán ennek a személytelen Istenségnek a különféle megnyilvánulása.
A keleti misztikus esetében a megvilágosodás pedig semmi mást nem jelent, mint hogy a jelenségek mögött meglássa az egységet, vagyis hogy rájöjjön arra, hogy valójában minden egy. Ez a szerző szerint egybevág a modern kvantummechanika eredményeivel, ahol a részecskék, és az általuk generált mezők egyáltalán nem választhatók el egymástól, mint ahogy a relativitáselméletben sem választható el egymástól a tér és az idő.
A modern fizika szemlélete szerint tehát a tárgyi világ objektumai teljes egységet képeznek, hasonlóan a keleti miszticizmushoz, de ellentétben a klasszikus fizika nézeteivel, ahol az anyag tovább nem osztható, gömbszerű atomokból áll. Hasonlóan egybevág a keleti vallások szemléletével a kvantummechanika bizonytalansági elve is.
E szerint a testeket alkotó részecskék helye és állapota, sőt egyáltalán léte nem állapítható meg egyértelműen, hanem csak valószínűsíthető, hogy a tér melyik helyén, és milyen állapotban van. Sőt, tulajdonképpen egyszerre lehet is valahol meg nem is, illetve létezhet is meg nem is. A keleti miszticizmus pontosan ilyen paradoxonokban gondolkodik. A valóság mélyrétegeiről olyan paradox kijelentések olvashatóak a taoista írásokban, mint például, hogy van is, nincs is, itt is van és ott is.
Érdekes az a gondolata is a szerzőnek, hogy a klasszikus fizika és általában a nyugati szemlélet erősen geometrikus jellegű, vagyis térben gondolkodik. Ezzel ellentétben a keleti szemlélet szerint a tér csak az emberi gondolkodás terméke, amely nem látja meg a tárgyi világ egymástól elkülönült jelenségei mögött az egységet.
Ez erősen egybeesik a modern relativitáselmélet szemléletével, ahol a tér nem létezik az anyagtól és az energiától különálló módon, hanem csak azoknak egyfajta relációjaként tartható számon. A hinduizmusban kevésbé, viszont a buddhizmusban és a taoizmusban hangsúlyozottan jelen van az állandó mozgás és változás gondolata, mivel a taoizmus a világ jelenségeit alkotó ősszubsztanciát, a taót dinamikusnak képzeli el. A szerző szerint a modern kvantummechanika szemléletére is hatványozottan jellemző az állandó mozgás-változás jelensége az atomi szinteken.
Sorolhatnám még az analógiákat, amiket a szerző felsorol a keleti vallások és a modern fizika között, de aki elolvassa a könyvet, az úgyis megismeri őket.
Érdemes összevetni Capra-nak a modern fizika és a keleti vallások kapcsolatáról leírt gondolatait azzal, amit én írtam le a modern matematika alapját képező halmazelméletről, amit Cantor alkotott meg. Mint ahogy leírtam az indiai matematikus: Ranganathan úgy fogalmazta meg a valós számok lényegét, hogy a valós számok folytonosan, kontinuusan nyúlnak végig a számvonalon, elválaszthatatlanul összefolyva egymással. Ez egyértelmű megfelelést mutat a keleti vallások panteisztikus szemléletével, ahol a tárgyi világ különálló létezői lényegében mind egységet képeznek a személytelen ősszubsztanciával, amit keleten brahmannak, vagy taónak neveznek.
A valós számok tehát olyan konstrukciók, amelyeknek szerkezete a keleti filozófiák tanításaival állnak analógiában, amelyeket pedig Capra a kvantummechanikával hozott kapcsolatba. Fent részletesen leírtam, hogy egy valós szám egyszerre lehet 0 is, és -0,00000.....1 is. Ez pedig szintén a Capra által leírt taoista paradoxonokkal mutat rokonságot, ahol a valóság mélyrétegeiben lejátszódó folyamatok olykor lehetnek egyszerre létezők és nem létezők is, és ezek a paradoxonok a kvantummechanika jelenségeivel is erős rokonságot mutatnak. Továbbá az a tény, hogy a valós számok egyszerre létezhetnek is, és nem is, egyértelműen dinamikus jellegükre utal, ami a keleti vallásokban, mint például a taoizmusban a lét alapját képező személytelen ősszubsztancia sajátossága.
A modern matematika alapját képező Georg Cantor által kidolgozott halmazelmélet tehát éppúgy a keleti filozófiák tanításaival mutat rokonságot, mint a modern fizika. Ebből pedig az következik, hogy a modern matematika is éppúgy a keleti vallások nyugati leképezése, mint a modern fizika.
Telcs Máté László: Térmetszetek című cikkében a fraktálok felfedezése előtt kidolgozta a tört dimenziós terek fogalmát, bár nem ugyanazt értette rajta, mint Mandelbrot. A teret Telcs olyan objektumként gondolja el, amely semmilyen irányban nincs határolva, tehát nincs felülete. Így térnek tekinthető a vonal, amely egydimenziós, és sem előrefelé, sem hátrafelé nincs határa. A sík, amelynek előre, hátra, felfelé, lefelé, illetve a kör 360 fokának egyik irányába sincs határa. Továbbá a test, amely háromdimenziós, és a három dimenzió egyik irányában sincsen határa. A vonalat, a síkot, és a testet külön-külön térelemeknek hívja, így tehát a tér olyan térelemnek tekinthető az ő értelmezésében, amelynek az általa birtokolt irányok közül egyik felé sincs felülete, határa.
Két tér metszése alatt lényegében azt a dimenziószámot érti, amelyet a kétfajta tér találkozásakor közös pontjaik alkotnak. Ha például egy vonalat egy sík felületének irányába tájolunk a háromdimenziós térben, akkor az a pont át fog hatolni a sík felületén, és találkozásuk egy pontot, vagyis nulldimenziós teret fog alkotni. A vonal és a sík metszése tehát a pont. Ugyanígy, ha két egymással párhuzamos sík közül az egyiket 90 fokkal elforgatjuk a háromdimenziós térben, akkor az elforgatott sík oldalával metszeni fogja a másik sík felületét, és találkozásuk egy vonalat: egydimenziós teret fog alkotni. Ha pedig vonal halad át a háromdimenziós téren, akkor közös részük értelemszerűen vonal lesz.
Két egyenes csak akkor metszi egymást, ha egy síkban fekszenek. Az egyenes és a pont csak akkor metszik egymást, ha egy vonalon fekszenek. Két pont nem metszi egymást csak akkor, ha mind a kettő egy harmadik pontban fekszik stb. Telcs ebből kifolyólag megkülönbözteti a maximális és a minimális metszőteret. A minimális metszőtér az a legalacsonyabb dimenziószámú tér, ahol a két tér metszése még létrejöhet. A maximális metszőtér pedig az a legmagasabb dimenziószámú tér, ahol a két tér metszése már létrejön. A metszést (X)-el jelöli a szerző.
Két tér metszési eredményét olyan térnek tekinthetjük, melynek dimenziószáma a metszésben résztvevő terek dimenziószámának összege kivonva abból a maximális metszőterüknek dimenziószámát. Ha a metszőtér dimenziószámát a képlet elé írt q-val jelöljük, akkor képletünket a következőképpen írhatjuk fel:
q; Dm X Dn = Dm + n – q
PÉLDÁK:
Pont és pont:
0; D0 X D0 = D0 + 0 = D0
A metszet pont.
Sík és sík:
3; D2 X D2 = D2 + 2 – 3 = D1
A metszet egyenes.
Sík és pont:
2; D2 X D0 = D0 + 2 – 2 = D0
A metszet pont.
Sík és egyenes:
3; D2 X D1 = D2 + 1 – 3 = D0
A metszet pont.
Egyenes és egyenes:
2; D1 X D1 = D1 + 1 – 2 = D0
A metszet pont.
Sík és test:
3; D2 X D3 = D2 + 3 – 3 = D2
A metszet sík.
Egyenes és pont
1; D1 X D0 = D1 + 0 – 1 = D0
A metszet pont.
A minimális metszőtérnek magában kell foglalnia az egymást metsző két teret egész terjedelmükben, így dimenziószáma egyiknél sem lehet alacsonyabb. Ennek megfelelően egy vonal nem foglalhat magában egy síkot vagy egy testet, így ezeknek nem lehet metszőtere sem. Egy sík azonban magában foglalhat egy egyenest és egy síkot is, így ezeknek már lehet metszőtere. Vonal és sík maximális metszőtere a háromdimenziós tér, mert ha a vonalat a háromdimenziós térben a sík felülete felé fordítjuk, akkor már metszik egymást. Minimális metszőtere a sík, mert egy sík magában foglalhat teljes terjedelmében egy másik síkot, és egy vonalat is, ha azok párhuzamos irányúak vele, de háromdimenziós teret már nem.
Ha egy egyenes és egy sík síkban metszik egymást, vagyis ugyanabban a síkban fekszenek, akkor metszésük egyenes lesz, mert a sík az egyenest teljes terjedelmében magába foglalja.
2; D1 X D2 = D1 + 2 – 2 = D1
Ha egy sík és egy másik sík minimális metszőterükben: a síkban metszik egymást, akkor metszőterük a sík lesz, mert ha két sík egy síkban fekszik, akkor kölcsönösen magukba foglalják egymás pontjait.
2; D2 X D2 = D2 + 2 – 2 = D2
A maximális metszőtérben lefektetett tétel tehát a minimális metszőtérben is igaz. A minimális metszőtér dimenziószáma az egymást metsző két tér közül a magasabb dimenziószámú tér dimenziójának felel meg. A minimális metszőtérben létrejött metszet dimenziószáma az egymást metsző két tér közül az alacsonyabb dimenziószámú tér dimenziójának felel meg. Ha a magasabb dimenziószámú teret Dm-el, az alacsonyabb dimenziószámú teret pedig Dn-el jelöljük, akkor a minimális metszőtér (m) lesz. Képletünk pedig:
m; Dm X Dn = Dm + n – m = Dn
Ha egy egyenest egy ponttal ketté metszünk, két félegyenest kapunk, amely, amelyek egymással ellentétes irányban tekinthetők csak végtelennek. Tehát itt törtdimenziós tereket kapunk, amelyek esetünkben 0,5 dimenziós tereknek tekinthetőek. A két féldimenziós tér maximális metszőtere az egydimenziós egyenes lesz, és csak egy közös nulldimenziós pontjuk lesz, ahol ketté metszettük őket, és találkoznak egymással. Ez megfelel a már lefektetett tételünknek, és a képletnek.
1; D0,5 X D0,5 = D0,5 + 0,5 – 1 = D0
A két féldimenziós tér minimális metszőterének a félegyenest tekinthetjük és a két félegyenes metszetét úgy kapjuk meg, hogy az egyik félegyenest beleforgatjuk a másik félegyenes pontjaiba, így a két félegyenes közös félegyenesben fog feküdni, és metszetük a félegyenes lesz. Ez is megfelel a képletnek.
0,5; D0,5 X D0,5 = D0,5 + 0,5 – 0,5 = D0,5
Ha az egydimenziós teret, tehát az egyenest rá merőlegesen meghosszabbítjuk egyik irányban a végtelenbe, akkor egy félsíkot kapunk, ami több mint az egydimenziós egyenes, de kevesebb, mint a kétdimenziós sík, tehát 1,5 dimenziós teret kapunk, amit egy egydimenziós egyenes határol el. Ha ez a félsík két egyenes metszőtereként van jelen, akkor ez a két egyenes párhuzamos egymással, mert párhuzamos a félsík elhatárolóvonalával, hiszen ha ez nem így lenne, akkor a két egyenes átmetszené az elhatárolóvonalat, és a kétdimenziós sík metszőterében lenne jelen.
Két félsík metszése maximális metszőtérben azaz a háromdimenziós térben a pont, hiszen ha párhuzamosak egymással a kétdimenziós térben, akkor közös részük az egyenes lesz, ha viszont az egyiket elforgatjuk a háromdimenziós térben, akkor már csak egy pontban fognak érintkezni.
3; D1,5 X D1,5 = D1,5 + 1,5 – 3 = D0
Ennek megfelelően kétdimenziós metszőtérben az egyenes lesz a kettő metszete, ahogy minimális metszőtérben, azaz 1,5 dimenziós térben a félsík lesz a kettő metszőtere. Mindebből a féltér, vagyis a 2,5 dimenziós tér metszőterei és metszetei már kikövetkeztethetőek.
A gömbfelület nem más, mint azoknak a pontoknak az összessége, amelyek egy álló ponttól egyforma távolságra vannak. Attól függően, hogy milyen térben vesszük fel ezt a távolságot megkülönböztethetünk 0, 1, 2 és 3 dimenziós gömbfelületet. Egy egyenesen kijelölt középponttól mérve csak két pont vehető fel ettől a középponttól egyenlő távolságra (jobbra és balra). Ez a két pont képezi az egydimenziós gömbfelületet. Ehhez hasonló módon képezhető a kétdimenziós körkerület, amely kétdimenziós gömbfelületnek tekinthető, vagy a háromdimenziós gömbfelület. Ha pedig a középpont, és a felületi pontok távolságát nullára csökkentjük, akkor megkapjuk a nulldimenziós gömbfelületet.
Ha ez a félsík két egyenes metszőtereként van jelen, akkor ez a két egyenes párhuzamos egymással, mert párhuzamos a félsík elhatárolóvonalával, hiszen ha ez nem így lenne, akkor, akkor a két egyenes átmetszené az elhatárolóvonalat, és a kétdimenziós sík metszőterében lenne jelen. A Bólyai-Lobacsevszkij tétel értelmében, miszerint a párhuzamosok a végtelenben metszik egymást, a két párhuzamos egyenes metszete két pont lesz a végtelen két szélső pontján, vagy előbbi definíciónk értelmében egy egydimenziós gömbfelület, vagy ha úgy tetszik egydimenziós tér. A képlet azonban ennek ellent mond.
1,5; D1 X D1 = D1 + 1 – 1,5 = D0,5
Ha 2,5 dimenziós térre alkalmazzuk ezt a képletet, akkor is a tételünknek ellentmondó eredményre jutunk. A metszőtér ugyanis nem 2 dimenziós tér, vagy gömbfelület, hanem 1,5 dimenziós tér lesz. Ez az ellentmondás a szerző szerint csak látszólagos. A paradoxont úgy oldja fel, hogy szerinte az egydimenziós gömbfelület, amely két egyenes metszésének tekinthető a 1,5 dimenziós térben több mint a nulldimenziós tér, mert egyenest alkot. Viszont kevesebb, mint az egydimenziós tér, mert a végtelenben mégis csak vannak végpontjai az abszolút végtelen egyenessel szemben, tehát mégis másfajta egyenest alkot. Így itt ténylegesen egy 0,5 dimenziós térrel van dolgunk, amely esetünkben nem félegyenes, hanem egy egydimenziós gömbfelület.
Ugyanígy az kétdimenziós gömbfelület, amely két sík metszésének tekinthető a 2,5 dimenziós térben több mint az egydimenziós tér, mert egyenest alkot. Viszont kevesebb, mint a kétdimenziós tér, mert a végtelenben mégis csak vannak végpontjai az abszolút végtelen síkkal szemben, tehát mégis másfajta síkot alkot. Így itt ténylegesen egy 1,5 dimenziós térrel van dolgunk, amely esetünkben nem félsík, hanem egy kétdimenziós gömbfelület. Így képletünk:
m + 0,5; Dm X Dm = Dm + m – (m + 0,5) = Dm – 0,5
Itt azonban m + 0,5 nem adott dimenziószámú teret, hanem m dimenziószámú gömbfelületet jelent. Mindebből pedig az következik, hogy:
3,5; D3 X D2 = D6 – 3,5 = D2,5
Ez pedig 3 dimenziós gömbfelületet jelent. Tehát ha a mi háromdimenziós terünkön kívül lenne még egy háromdimenziós tér, és az a mi háromdimenziós terünket a 3,5 dimenziós metszőtérben metszené, akkor egy végtelenül nagy sugarú gömbfelület jönne létre.
A szerző utolsó megjegyzése szerint pedig ilyen metszetnek léteznie kell. Hiszen terünk minden irányban határtalan, vagyis háromdimenziós végtelensugarú gömbnek tekinthető, ami csak két háromdimenziós tér metszeteként jöhet létre a 3,5 dimenziós térben. Ahogy pedig kép pont vonalat, két vonal síkot, két sík pedig teret alkot, két háromdimenziós térnek a négydimenziós teret kell alkotnia, így tehát léteznie kell a negyedik dimenziónak, aminek pedig ötdimenziós teret kell alkotnia a 4,5 dimenziós metszőtérben és így tovább.
A cikk célja tehát végeredményben a négydimenziós, és az annál magasabb dimenziószámú terek létezésének bizonyítása volt. Ez a végcél nem sikerült, ugyanis a cikk végén elkövetett egy logikai hibát. Ahogy fent olvashattuk annál a résznél, ahol a végtelensugarú egydimenziós gömbfelületet két egymással párhuzamos egyenes metszőtereként értelmezi a 1,5 dimenziós térben, megkülönböztette egymástól a végtelen sugarú egydimenziós gömbfelületet, és az abszolút végtelen egydimenziós egyenest. Abban a részben pedig, ahol a negyedik dimenzió létét igyekszik bizonyítani, megfeledkezik erről a megkülönböztetésről, és azt mondja, hogy mivel a mi háromdimenziós terünk mindenfelé végtelen, és határtalan, mindenképpen egy háromdimenziós gömbfelületet kell alkotnia. Pedig az ő értelmezésében a végtelensugarú háromdimenziós gömb, és az abszolút végtelen háromdimenziós tér is végtelent jelent, csak éppen egymástól különböző végteleneket, akkor pedig fel kell tennünk a kérdést, hogy a végtelen tér miért éppen egy végtelensugarú háromdimenziós gömböt, és miért nem egy abszolút végtelen háromdimenziós teret alkot.
A célját tehát nem érte el a dolgozat, azonban tett egy nagyon fontos felfedezést, megkülönböztetett egymástól két fajta végtelent, akárcsak Georg Cantor, és az egyiket a körhöz, a másikat pedig az egyeneshez kötötte. Ahhoz, hogy innen tovább tudjunk lépni meg kell vizsgálnunk ezt a két fajta végtelent. A körhöz kapcsolódó végtelent fogjuk először megvizsgálni, ehhez pedig meg kell értenünk, hogy mi is az a Bolyai-Lobacsevszkij féle nemeuklidészi geometria, amely alapján Telcs a körhöz kötődő végtelent elhatárolta az abszolút végtelentől, ahogy azt fent olvashattuk.
A Bolyai féle geometria alaptétele, hogy a párhuzamosok a végtelenben metszik egymást. Ezt a tételt egy épeszű ember, ha meghallaná, bizonyosan őrültségnek tartaná, vagy olyan mögöttes értelmet gondolna bele, amit ő sohasem érthetne meg, ezért nem is foglalkozna vele többet. Pedig ezt szó szerint kell érteni. Ahhoz, hogy megértsük, hogy hogyan lehet ez az őrültségnek hangzó állítás igaz, ismerkedjük meg először a függvényekkel. A függvényekről nyilván mindenki tanult már az iskolában. A függvény lényegében egy egyértelmű hozzárendelés a matematikában, ahol egy konstans (állandó) értékhez egy változó értéket rendelünk hozzá valamilyen matematikai művelettel, mint például összeadás, vagy kivonás, és ennek értelmében, minden esetben, ha a változó értéke megváltozik, és ha a függvényben definiált műveletet elvégezzük, akkor a kapott eredmény, vagyis a függvény kimenete is megváltozik. Így például definiálhatjuk a következő függvényt:
f(x) = x + y2
Tehát (x) a konstans érték (y) pedig változó, ami azért változik, mert folyamatosan négyzetre emeljük, és minden esetben, amikor négyzetre emeljük, és elvégezzük a függvényben definiált műveletet, vagyis hozzáadjuk az x-hez, a függvény kimenete változik. Például legyen (x = 3) és (y = 2) Ebben az esetben (3 + 2 a négyzeten = (3 + 4) = 7), a következő menetben (3 + 4 a négyzeten = (3 + 16) = 19), és így tovább. Ezekből a változó függvénykimenetekből aztán érdekes grafikonokat rajzolnak a matematikusok a koordinátarendszerben, amelyek néha különös tulajdonságokkal bírnak. Ilyen például a hiperbola. Hogy a hiperbola milyen függvény eredményeként áll elő az most témánk szempontjából nem érdekes. A lényeg az, hogy egy olyan görbéről van szó, amelynek van egy jobb szára, ami a hiperbola alját elérve elgörbül, és irányt vált, ahogy az ábrán is láthatjuk, majd így lesz egy bal szára, ami felfelé folytatódik.
A hiperbolának a legfontosabb tulajdonsága az, hogy mind a két szára felfelé irányulva folyamatosan közeledik ahhoz az állapothoz, hogy kiegyenesedjen, egyenessé váljon, de sohasem érheti el ezt az állapotot, tehát lényegében csak a végtelenben válnak egyenessé. Egyes matematikusok elgondolkodtak azon, hogy ha létezik egy olyan görbe, amelynek szárai folyamatosan közelednek ahhoz állapothoz, hogy egyenessé váljanak, de azt sohasem érhetik el, és így csak a végtelenben válnak egyenessé, akkor miért ne lehetne az egyenes olyan objektum, ami ennek a fordítottját hajtja végre, vagyis sohasem tér le az útjáról, nem válik görbévé, csak a végtelenben. Ezt bizonyította be Bolyai János, hogy az egyenes olyan objektum, ami a hiperbola tükörképe, és a végtelenben görbévé válik, elpattan eredeti útjától, és a vele párhuzamos egyenest metszi.
Ennek a résznek nem az volt a célja, hogy Bolyai bizonyítását részletes bemutassam, csak annak a szemléltetése, hogy hogyan lehet az, hogy a párhuzamosok a végtelenben metszik egymást. Mit kell észrevennünk a hiperbola, és vele együtt a végtelen egyenes tulajdonságaiban? Egyértelműen a dinamikus jelleget. A hiperbola szárai, mint ahogy láthatjuk folyamatosan és megszakítás nélkül, vagyis dinamikusan közelítenek ahhoz az állapothoz, hogy a végtelenben egyenessé váljanak, ha pedig az egyenes a hiperbola tükörképe, akkor a végtelen egyenes is dinamikusan közelít ahhoz az állapothoz, hogy a végtelenben görbévé váljon és metssze a vele párhuzamos egyenest. Így a pont ahol a két egyenes metszi egymást dinamikusnak tekinthető. Most pedig emlékezzünk vissza, hogy a cikk elején a Cantor által definiált két végtelen közül melyik végtelent ruháztuk fel dinamikus jelleggel a keleti vallásokra hivatkozva. Egyértelműen a megszámlálhatatlanul végtelent. Tehát a megszámlálhatatlanul végtelen a két egymással párhuzamos, végtelen nagyságú térelem metszéseként létrejövő körhöz, vagy gömbhöz köthető. Míg a megszámlálhatóan végtelen az abszolút végtelen térelemekhez köthető, mint az egyenes a sík, vagy a tér.
Érdekes, hogy Cantor éppen a megszámlálhatatlanul végtelenről állapította meg, hogy az nagyobb, mint a megszámlálhatóan végtelen. Az eddig leírtakból pedig az világlik ki, hogy a megszámlálhatatlanul végtelen két végtelen térelem metszéséből alakul ki, vagyis vannak végpontjai, míg a megszámlálhatóan végtelen abszolút végtelennek tekinthető, és nincsenek végpontjai, vagyis a megszámlálhatóan végtelen a nagyobb. Ez csak a csalóka látszat. Az a tény, hogy a megszámlálhatatlanul végtelennek vannak végpontjai, a végtelen természetéből adódóan nem azt reprezentálja, hogy a megszámlálhatatlanul végtelen a kisebb, hanem, hogy annak van formája, míg a megszámlálhatóan végtelennek nincs.
Ahhoz ugyanis, hogy a pont dinamikus legyen formába ágyazottnak kell lennie, hiszen csak így vehet fel egyszerre két egymással ellentétes állapotot, ami a kvantummechanikának, és a keleti vallások valóságértelmezésének is a sajátossága. Ha megnézzük a kör kerületét, akkor láthatjuk, hogy ugyanúgy pontokból áll, mint bármelyik egyenes vagy görbe, és ha a középpontból sugarakat húzunk a kör kerületének pontjaihoz, akkor minden sugár más irányba fog mutatni. Tehát a kör kerületét alkotó minden pont más irányú, vagy ha úgy tetszik állapotú. Mivel pedig ezek a pontok összefüggnek, hiszen a körvonal egységet alkot, a kör kerületének egy adott pontja más állapotú a tőle jobbra lévő pont szempontjából, és megint más állapotú a tőle balra lévő pont szempontjából, másként a pont állapota a két állapot szuperpozícióját alkotja, vagyis egyszerre magában foglalja mind a két állapotot. Tehát ahhoz hogy a kör pontjai dinamikusak jelleggel bírjanak, a körnek formával kellett rendelkeznie, minden végpontjának más állapotúnak kellett lennie.
Ezzel ellentétben az egyenesnek, amely a megszámlálhatóan végtelenhez, vagy másként az abszolút végtelenhez köthető, ha két dimenzióba emeljük, akkor négyzetet kapunk, és a négyzet minden oldala egyenes, vagyis minden oldalának pontjai azonos állapotúak, és így lényegében nincs formája. Ez a tulajdonsága hívja életre azt a jelenséget, hogy végtelen nagyságban úgy tűnik nincsenek végpontjai, és nem az, hogy nagyobb, mint a megszámlálhatatlanul végtelen. Nem véletlen talán, hogy a reneszánsz korának egyik legismertebb európai panteista filozófusa: Nicolaus Cusanus, Istent, akit ő a keleti vallásokhoz hasonlóan személytelen ősszubsztanciaként, vagy egyként gondolt el a körhöz, illetve a gömbhöz hasonlította. Míg Aquinói Szent Tamás, akinek teológiája élesen szemben állt a panteizmussal a végtelenről azt állította, hogy nem lehet formája.
A fent levezetett gondolatmenetből a számunkra legfontosabb gondolat az, hogy a forma kvantumjelenség. A forma lényegében a test felszínének alakja, és az, hogy egy test felszínének van alakja abban mutatkozik meg, hogy a test felszínének minden pontja meghatározott koordinátákkal rendelkezik, és ezek a koordináták minden szomszédos pont szempontjából más értéket vesznek fel, az adott pont helyzete pedig ezeknek az értékeknek a szuperpozícióját veszi fel, ahogy a kvantumrészecskék állapota is két energiaállapot szuperpozíciójának tekinthető, vagyis egyszerre vannak mind a két állapotban.
Mindez érdekes dolgokat mond el számunkra a PÍ-ről, ami egyenlő 3, 14-el. A PÍ, mint tudjuk, a kör kerületének, és átmérőjének hányadosa. Mi pedig megállapítottuk, hogy a kör a megszámlálhatatlanul végtelenhez, az egyenes pedig a megszámlálhatóan végtelenhez köthető. Ezek szerint a megszámlálhatatlanul végtelen 3, 14-szer nagyobb lenne, mint a megszámlálhatóan végtelen? Ez nyilvánvalóan a végtelenben annak sajátos természete miatt nem így van, ez csak egy a végtelenből a végesbe vetített mennyiség.
Vajon hogyan írhatjuk le ezt a kettős állapotot a számok nyelvén? Ennek megválaszolásához meg kell ismerkednünk a képzetes számokkal. Mindenki tanulta az iskolában a negatív és pozitív számok közötti alapműveleteket. Ha negatív számot szorzunk vagy osztunk pozitív számmal negatív számot kapunk eredményük Tehát -2 * +2 = -4. A hatványozás azt jelenti, hogy egy bizonyos számot valahányszor megszorzunk önmagával, például 4 * 4-re azt mondjuk, hogy az a 4-es szám második hatványa, mert kétszer szoroztuk meg önmagával a négyet. A gyökvonás ennek az ellentéte. Egy adott számból fejtjük vissza vele azt a számot, amit ha önmagával megszoroznánk megkapnánk azt az adott számot. 16 négyzetgyöke például 4, mert 4-et kell megszorozni önmagával, hogy tizenhatot kapjunk.
Mivel pedig a hatványozás törvényei szerint egy számot csak önmagával megszorozva lehet hatványozni a matematikusokat zavarba ejtette az a kérdés, hogy mennyi lehet -1 négyzetgyöke, hiszen mint ahogy fent leírtuk a -1-et szorzatként csak úgy kaphatjuk meg, hogy -1-et és +1-et szorozzuk össze, amelyek egymástól eltérő számok. Ezt a paradoxont pedig csak úgy oldhatjuk fel, ha azt mondjuk, hogy -1 négyzetgyöke nem egy bizonyos szám, hanem egyszerre +1 is és -1 is. Ezeket a számokat nevezték el a matematikusok képzetes, vagy imaginárius számoknak, amelyek egy negatív szám négyzetgyökei, tehát egyszerre negatívok is és pozitívok is, és Riemann ezek segítségével jutott közelebb a prímszámok természetes számok közötti eloszlásának kérdéséhez. Mire emlékeztetnek minket a fent leírtakból a képzetes számok. Nyilvánvalóan a kvantummechanikára, hiszen fent már leírtuk, hogy a kvantummechanikai jelenségek a lét és nemlét egységére épülnek, ami a képzetes számokban a negatív és a pozitív számok egységében mutatkoznak meg, és valóban manapság már a Riemann sejtés kutatásában is nagy szerepet kap fizika és azon belül is a kvantummechanika. Tehát ha a valós számok kapcsolatba hozhatóak a kvantummechanikával, akkor a prímszámok is, vagy másként a prímszámok a valós számok folytatásának tekinthetőek a természetes számok között.
Láthattuk, hogy a képzetes vagy imaginárius számok képzését gyökvonással tettük meg, ahol a gyökvonás segítségével egységet képeztünk a -1 és a +1 között. Ennek nyomán ha két különböző természetes szám között akarunk egységet vonni a képzetes szám képzésének mintájára, akkor a két számot össze kell adnunk, és az összegből kell gyököt vonnunk. Így például: sqrt(5+6). Mivel pedig a kör pontjai mindig a szomszédos pontokkal alkotnak egységet. Nekünk is mindig a szomszédos természetes számok között kell egységet vonnunk, ami ha a fenti képletben a számokat egy változóra cseréljük úgy néz ki, hogy: sqrt((x-1)+x). Ha az (x) értékét a képletben mindig növeljük egyel az azt jelenti, hogy mindig a következő két természetes szám között képzünk egységet. Így például: sqrt(5+6), sqrt(6+7) stb.
Igen ám, de ezzel még nem fejeztük be a dolgot, mert a kör pontjai éppen pontszerűségükből adódóan kvantumjellegűek, azaz nemcsak két különböző dolog között képeznek egységet, hanem konkrétan a lét és a nemlét között képeznek egységet, ez pedig csak a valós és a képzetes számoknál jelenik meg, a természetes számoknál nem. Tehát ahhoz, hogy a természetes számok egységbe vonásával képzett számaink ne csak egymás között, hanem a lét és nemlét között fluktuáljanak, meg kell szoroznunk az így kapott számainkat egy képzetes számmal, konkrétan -1 négyzetgyökével, amit a matematikusok úgy jelölnek, hogy (i). Így a képletünk úgy fog kinézni, hogy:
sqrt((x-1)+x) * i
Ezzel véleményem szerint megkaptuk azokat a számokat, amelyeknek úgy kell viselkedniük, mint a kör pontjai, vagyis mint a formák. Érdekes kérdésnek tartom, hogy milyen eredményre jutnánk, ha ezt a képletet felhasználnánk az úgynevezett fraktálok képzésénél. A fraktálok a legelterjedtebb meghatározásban önhasonló alakzatokat jelentenek. Véleményem szerint leginkább úgy lehetne meghatározni őket, mint a dinamizmus és a statikusság egységét.
A fraktálok Mandelbrot német matematikus találmányai, aki a következő képlettel állította elő őket: z = z^2 + c, ahol a (c) egy képzetes szám. Ez alapján a képlet alapján hozott létre alakzatokat a képzetes számsíkon, vagy koordinátarendszerben, és ezek fraktálokat adtak eredményül. Ahogy láttuk a képletben a (z) négyzetre van emelve, és ahogy a gyökvonás dinamizálja a számokat, tehát a dinamikus kvantumfolyamatokhoz teszi hasonlatossá őket, úgy annak ellentéte a hatványozás nyilván statikussá teszi őket, tehát beleveti őket a természeti szükségszerűségbe, így a képletben a z^2 nyilván a statikusság megtestesítője. A (c) pedig, ami képzetes szám nyilván a dinamizmus megtestesítője, hiszen a képzetes számok a kvantumfolyamatok megtestesítői, mint ahogy azt fentebb kifejtettük. Ez a képlet tehát azt fejezi ki, hogy a fraktálok a statikus természeti szükségszerűség és a kvantummechanika dinamizmusának szintéziseként állnak elő.
A kérdés az, hogy mi történne, ha a fenti képletben a természeti szükségszerűséget nem csupán a kvantummechanikai valósággal, hanem konkrétan a formákkal, tehát a kvantummechanikai valóság szegmenseinek egymással összefűzött változataival hoznánk egységbe. Ebben az esetben képletünk a következő képpen nézne ki:
z = z^2 + sqrt((x-1)+x) * i
Ha ezt a képletet mozgatnánk meg a képzetes számsíkon, akkor vajon mi történne? Ez azért érdekes kérdés, mert a forma nyilvánvalóan egyedül az anyag sajátossága, az anyagról pedig különféle régebbi cikkeimben megállapítottam, hogy az nem más, mint a dinamikus kvantummechanikai valóság és a statikus tér szintézise. A következő cikkeimről van itt szó:
Kire vonatkoztatható Krisztus második eljövetele a történelemben? http://ujkozepkor.blogspot.hu/2012/11/kire-vonatkoztathato-krisztus-masodik.html
666 avagy az Antikrisztus számának matematikai elemzése a spidron rendszer segítségével, avagy miként helyettesítsük az Antikrisztust Krisztussal https://www.blogger.com/blogger.g?blogID=3094490231904541901#editor/target=post;postID=6576721895340273404;onPublishedMenu=posts;onClosedMenu=posts;postNum=0;src=postname
Michelangelo, a sötét energia és a fénysebességnél gyorsabb utazás http://ujkozepkor.blogspot.hu/2014/10/michelangelo-sotet-energia-es.html
Ennek végrehajtásához nekem nem állnak rendelkezésemre a megfelő eszközök, mert én nem vagyok matematikus, de mindenképpen fontos lenne azt megtenni, mert talán ezzel közelebb juthatnánk annak megismeréséhez, hogy hogyan épül be a kvantummechanikai valóság az anyagba.
Felhasznált Irodalom:
Egyetemes Guiness Enciklopédia. Pannon Könyvkiadó, 1992. 68-69. o
Az avantgard és a végtelenedik dimenzió című cikk fórumhozzászólásai http://tárogatóhangján.hu/plugins/forum/forum_viewtopic.php?454
Fritjof Capra: A fizika taója, TERICUM KIADÓ KFT., 1998. 101-147. o
Ungváry Rudolf–Orbán Éva: OSZTÁLYOZÁS ÉS INFORMÁCIÓKERESÉS Kommentált szöveggyûjtemény Elsõ kötet: Az osztályozás és elmélete, Országos Széchényi Könyvtár, Budapest, 2001. http://mek.oszk.hu/01600/01683/pdf/01683-1.pdf 123. o
Telcs Máté László: Térmetszetek (A tér fogalmának bővítése tört dimenziókkal s egyuttal némely geometria fogalom új definitiója), Szeged, 1921. 3-11. o
Péter Rózsa: Játék a végtelennel, Tankönyvkiadó, Budapest, 1974. 209-219. o
Nicolaus Cusanus: A tudós tudatlanság, Kairosz Kiadó. 15-17. o
Aquinói Szent Tamás: A teológia foglalata első rész, Telosz Kiadó, 1994. 198-193. o
Kekulé „álma” Ponticulus Hungaricus · VII. évfolyam 6. szám · 2003. június http://members.iif.hu/visontay/ponticulus/rovatok/hidverok/kekule_dream.html
Marcus du Sautoy: A prímszámok zenéje, Park Kiadó, 2014.
Nincsenek megjegyzések:
Megjegyzés küldése