2013. november 2., szombat

Az osztály fogalma a filozófia és a káoszelmélet szempontjából Giczi András Béla cikke alapján

Az osztály általánosan elterjedt fogalma a filozófiában lényegében nem más, mint valamilyen közös tulajdonságok alapján álló objektumok összessége, mint például fák osztálya. Az osztályt a halmaztól az különbözteti meg, hogy a halmazba nem feltétlenül kerül bele a közös tulajdonságok alapján álló objektumok összessége, hanem csak egy része. Egy különálló erdő például nem a fák osztálya, hanem csak halmaza, mert nem foglalja magába az összes létező fát a világon, hanem csak egy részüket. Továbbá a halmazba belekerülhetnek eltérő tulajdonsággal rendelkező objektumok is. Az osztályok általában további alosztályokra bondhatóak, mint ahogy az épületek is lehetnek templomok, gyárak, vagy lakóházak.

Giczi András Béla: Osztályozás és káoszelmélet című cikkében véleményem szerint megsejtett egy fontos dolgot az osztályok fogalmával kapcsolatban, de nem fejtette ki megfelelő formában. Most ezt a hiányt szeretném pótolni. Először is magának a káoszelméletnek a filozófiai alapjaival kell megismerkednünk.

A káoszelmélet olyan egyszerű nem lineáris dinamikai rendszereket tárgyal, amelyeknek a viselkedése az őket meghatározó determinisztikus tényezők megléte ellenére nem jelezhető előre megfelelően. Ilyen az időjárás, vagy a gazdasági folyamatok, vagy bizonyos turbulens folyadékáramlások stb. Ezek a folyamatok általában a kezdőfeltételekre nagyon érzékenyek, ami azt jelenti, hogy a kezdőfeltételek kismértékű megváltozása nagy hatással van az adott folyamat jövőbeni fejlődésére. Így például jól ismert a káoszelmélet irodalmában a pillangóeffektus, amikor a pillangó szárnycsapása amerikában akár egy vihart is előidézhet a francia alpokban. A cikk arra keresi a választ, hogy hogyan helyezhető el a káoszelmélet tudománya a filozófia rendszerében, milyen filozófiai irányzathoz kötődik leginkább a káoszelmélet. A cikk megírásával nem akarok kifejezni semmiféle azonosulást, vagy egyetértést a káoszelmélet alapjául szolgáló filozófiai irányzatok iránt, a cél csak a téma elemzése a jövőbeni kiterjedtebb elemzések megalapozása céljából. Mielőtt témánkra rátérnénk, azt kell kielemeznünk, hogy mi az a forma.


A kontinuum-hipotézis azt mondja ki, hogy nincs számosság a valós számok számossága, vagyis a megszámlálhatatlanul végtelen, és a természetes számok számossága, vagyis a megszámlálhatóan végtelen számosság között.


Mit jelent a megszámlálhatatlan és a megszámlálható végtelen számosság? A halmazelmélet tudományának mai állása szerint két halmaz elemeinek száma egyenlő, ha elemeiket egyértelműen meg tudjuk feleltetni egymásnak. Ez a halmazelmélet szerint igaz mind a véges, mind pedig a végtelen halmazokra. Csak azt kell bizonyítani, hogy ha két végtelen halmaz elemeit egymáshoz rendeljük az egy-egy egyértelmű leképezés. Így például könnyen bebizonyítható, hogy az a leképezés, amelynek során a természetes számokat kétszeresükhöz (vagy éppen minden természetes számot a feléhez) rendelünk, egy-egy egyértelmű leképezés:


1 → 2


2 → 4


3 → 6


4 → 8


5 → 10


6 → 12


7 → 14


8 → 16


és így tovább a végtelenségig. Eszerint tehát éppen annyi páros szám van, mint amennyi természetes szám. Vagyis a természetes számok halmaza egyenlő számosságú egyik részhalmazával. Ugyanezzel a módszerrel könnyen bebizonyítható az is, hogy a természetes számok halmaza egyenlő számosságú a racionális számok halmazával. Kiszámítható, hogy melyik természetes számnak melyik racionális szám felel meg:


2 → 1/1


3 → 1/2


4 → 2/1


5 → 1/3


6 → 3/1


7 → 1/4


8 → 2/3


9 → 3/2


10 → 4/1


és így tovább a végtelenségig. Cantor bizonyította be a matematikatudomány mai állása szerint, hogy a valós számok nagyobb számosságúak mint a természetes számok. Ezt a következő gondalatmenettel tette meg: „Vegyük a 0 és 1 közötti valós számokat, tizedesjegyekkel kifejezve (például: 0,47 936 421…) úgy, hogy a tizedesvessző után minden számnak végtelen sok számjegye van. Ha vége van a tizedesjegyeknek, akkor nullákkal folytatjuk. Tegyük fel, hogy a valós számokat sorba lehet állítani, és így kölcsönösen egyértelműen meg lehet feleltetni a természetes számokkal. Ekkor tehát minden valós számot ebben a formában lehetne leírni.


0, A1 A2 A3 A4 …


0, B1 B2 B3 B4 …


0, C1 C2 C3 C4 …


Most próbáljunk meg új számot létrehozni Az első számjegy más lesz, mint A1, a második számjegy más lesz, mint B2, a harmadik számjegy más lesz, mint C3 és így tovább. Így egy új, 0 és 1 közötti valós számhoz jutottunk, de oly módon, hogy az különbözik a teljesnek feltételezett valós számok listájának minden egyes tagjától. Tehát ellentmondáshoz jutottunk. Mindebből az következik, hogy lehetetlen felsorolni a valós számokat. Ebből a gondolatmenetből Cantor bizonyítottnak látta, hogy a valós számok nagyobb számosságúak a természetes számoknál. A természetes számok számosságát elnevezte megszámlálhatóan végtelennek, az annál nagyobb valós számok számosságát pedig megszámlálhatatlanul végtelennek.3


A pontra a matematikusok azt mondják, hogy az nem 0 méretű, hanem végtelenül kicsi. Ez érdekes gondolat, de meg is lehet cáfolni. A következőkben leírandó számoknál a (...) mindig a számjegyek végtelen ismétlődését jelentik. Pl. 1,999... azt jelent, hogy a 9-es végtelen sokáig folytatódik a tizedes jel után.


Tehát akkor vegyünk egy ilyen végtelen hosszú valós számot:


„1,9999999...


Szorozzuk meg 10-zel, az eredmény:


19,9999999....


Mivel a 9-esek a végtelenbe folytatódnak ezért a 10-zel való szorzás után is a végtelenbe fognak folytatódni.


Akkor ebből a számból vonjuk ki az eredeti számot.


Vagy ha úgy tetszik a szám 10-szereséből kivonjuk a szám 1-szeresét ezzel megkapjuk a 9-szeresét:


19,9999999.... - 1,99999999... = 18


A tizedes vessző utáni 9-esek mindkét számnál a végtelenbe folytatódnak, tehát egymásból kivonva őket 0 lesz a tizedes vessző után, tehát az eredmény a kivonás után 18.


Most a 10-szeres számból vontuk ki az egyszeres számot, tehát maradt a 9-szeres számunk. Ami nem más, mint a 18.


18/9=2


Most akkor mi is történt?


Igen, jól láthatjuk az 1, 9999.... = 2.


Bármennyire is két különböző számnak tűnik, ami az egyenlőségjel két oldalán látunk a két szám matematikailag igazolva egyenlő.


Sőt továbbmegyek.


Mivel 1,999... = 2


Ha ezt a két számot kivonom egymásból akkor a józan ész szerint 0-t kellene kapnom.


Ezzel szemben az eredmény -0,00000.....1 lesz


Vagyis egy számot önmagából kivonva negatív eredményt kapok. Igaz, hogy végtelen kicsi negatív, de negatív.


Furcsa ugye?”


Ez azt sugallja, hogy létezik is olyan, hogy végtelenül kicsi, meg nem is. Azonban van itt még egy probléma is. Ha egy vonalat végtelen sokáig darabolunk, akkor pont lesz belőle, vagyis: „végtelenül kicsi”. De teljesen mindegy, hogy egy húsz centiméteres, vagy egy tíz, vagy akárhány centiméteres vonalat darabolunk, azt is végtelenszer kell darabolnunk, hogy pont legyen belőle. Viszont, ha pontból, vagyis végtelenül kicsikből akarunk vonalat csinálni nyilván akkor is végtelenül sokáig kell egymás mellé raknunk a pontokat, hiszen azok végtelenül kicsik, ha ezt megtesszük, akkor hány centiméteres lesz konkrétan a vonal? 10 vagy 20? Illetve, ha 10 centiméteres vonalat darabolunk, akkor 10, ha húsz centimétereset, akkor 20? Ez lehetetlen, mert a pont mérete mindenképpen egyforma: végtelenül kicsi, és az összerakás lépéseinek száma mindenképpen végtelen marad.


Másképp megfogalmazva: itt éppen az a paradoxon, hogy a pontot, mint végtelenül kicsit, nem lehet lefordítani a véges méretű vonalak mérhető mennyiségeire, mégis létezik, és ha ilyen pontokból vonalat akarunk összerakni végtelen lépésben, akkor mégis valamilyen konkrét, mérhető mennyiségnek kell kijönnie, amelyek egymástól különbözőek lehetnek, annak ellenére, hogy a pontokból való összerakás lépéseinek száma mindig végtelen. Ez az én olvasatomban csak úgy lehetséges, hogy a végtelenül kicsiknek, a pontoknak, amelyeknek egyforma méretűeknek kellene lenniük, mégis különböző méretűek, vagyis végtelenül sok méretben léteznek végtelenül kicsik. Vagyis, a végtelenül kicsiket valahogy mégis le lehet fordítani a véges méretekre. Vagyis a kérdés az, hogy mi határozza meg a pontoknál azt, hogy ha azokból véges méretű vonalat akarunk összerakni, akkor azok a vonalak milyen méretűek lesznek.


Tehát mind a második paradoxon, amit felvetettem azt sugallja, hogy a végtelenül kicsi vagy nem létezik, vagy többfajta méretben is létezhet egyszerre. Az első paradoxon pedig inkább azt, hogy egyáltalán nem létezik, de azért ott is felvethető, egyszerre lehet 0 is, és -0,00000.....1 is. Ha pedig ez igaz, akkor lehet akár 0,00000.....111111... is, vagy még több egyest vagy más számot is hozzáadhatunk, a végtelenségig, pontosabban a végtelen közepéig, ameddig szintén végtelen út vezet. Ugye milyen furcsa, ha a végtelentől indulva elkezdjük a 0-kat behelyettesíteni 0-nál nagyobb számokkal, a számok akkor sem fogják elérni sohasem, a 0,0-át, és lényegében mindig ugyanolyan távol maradnak 0,0-tól, mint -0,00000.....1 esetében, vagyis végtelen távolra, akárcsak, ha 0,0-tól indítanánk a számok behelyettesítését a végtelen felé. Tehát ugyanúgy végtelenül kicsi marad a szám, mégis nőni fog az értéke.


A második paradoxon szerintem feloldható. Talán lehet, hogy két fajta végtelenül kicsi létezik. Megszámlálhatóan végtelenül kicsi, és megszámlálhatatlanul végtelenül kicsi. A megszámlálhatóan végtelenül kicsi az 1/∞. A megszámlálhatatlanul végtelenül kicsi az pedig a példában szereplő -0,00000.....1, hiszen az a legkisebb valós szám, és a valós számok halmazáról Georg Cantor megállapította, hogy megszámlálhatatlanul végtelen. Tehát a megszámlálhatatlanul végtelenül kicsinek talán éppen azért változhat a mérete, lehet egyszerre nagyobb is meg kisebb is, mert megszámlálhatatlanul kicsi, tehát ahogy a nevében is benne van, nem meghatározható egyértelműen a mérete. Ez is egy lehetőség.


Tehát a kérdés az, hogy a pontok, amelyekből a vonalak felépülnek megszámlálhatóan, vagy megszámlálhatatlanul végtelenül kicsik.


Ezek szerint viszont léteznek végtelenül kicsi számok is, és ez tulajdonképpen az első paradoxont is feloldja, hiszen ha a megszámlálhatatlanul végtelenül kicsi több értéket is felvehet, akkor 0-t is felvehet. A megszámlálhatatlanul végtelenül kicsi esetében, hogy ezt el tudjuk képzelni érdemes szemügyre venni a megszámlálhatatlanság jellemzőit. Egy indiai matematikus Ranganathan ezt úgy fogalmazta meg, hogy a valós számok folytonosan, kontinuusan nyúlnak végig a számvonalon, elválaszthatatlanul összefolyva egymással. Vagy más szóval: nem létezik két olyan – egymáshoz mégoly közel álló – valós szám, amely között ne volna meghatározható további végtelen számú valós szám.


Ha ezt halljuk, és megerőltetjük vizuális képességeinket, agyunkban egy olyan képzet alakulhat ki, mintha belelátnánk egy természetes szám belsejébe, és ott, ahogy egyre mélyebben nézünk bele a természetes számba, azt látnánk, hogy a valós számok folyamatosan, egymás között szaporodnak. Igen, a megszámlálhatatlan végtelenség, valójában a megszámlálható végtelenség folyamatos önosztódása, ami azt jelenti, hogy a megszámlálhatatlanul végtelenül kicsi mérete a folyamatos önosztódással egyenes arányban csökken a megszámlálhatatlanul végtelenül kicsi méretétől lefelé. Ez talán így van a végtelenül kicsik összességének fizikai megnyilvánulásának esetében is. A végtelenül nagy méretű vonal valószínűleg végtelenül nagy méretű végtelenül kicsiket, vagyis meszámlálhatóan végtelenül kicsiket tartalmaz, ha pedig a vonal kisebb, akkor vele egyenes arányban a pontok mérete is kisebb, amelyek így már a megszámlálhatatlanul kicsi kategóriájába tartoznak. Ez is érdekes lehetőség, hogy talán a valós számokat nem egységes egészként kell elképzelni, hanem olyan objektumként, amely rugalmasan és folyamatosan teremtődik. A megszámlálhatatlan végtelenség talán olyan, mint a lét folyamatos betöltése, soha nem töltődhet be teljesen, ezért mindig tovább osztódik. Vagy talán egyszerre folyamatosan teremtődő, és statikusan egységes. Milyenek azok a végtelenül kicsi számok?


A végtelenül kicsi számokat úgy képzelhetjük el, mint a valós számok felét. Mintha a valós számok tizedesvessző után kezdődő részének végtelen sorát kettévágnánk, és a tizedesvessző utáni rész azon részéből, amelynél a tizedesvessző utáni rész végtelenedik pontja felől növekednek a számok, az egyesek vagy a kettesek, most teljesen mindegy, mert valós számokról van szó, kapnánk egy új végtelent számsort, amely az eredeti végtelen számsor közepéig tart, hiszen, ha tovább tartana, akkor már nem lenne végtelenül kicsi. Az eredeti végtelen számsor közepe után, pedig csak 0-ák lehetnek az eredeti számsoron 0,0-ig. A végtelenül kicsi számok tehát olyan valós számok, amelyeknél a tizedesvessző utáni számsoron a 0 feletti számok csak a végtelentől a számsor közepéig tartana, utána pedig 0 vannak 0,0-ig, és a számsor közepétől számítva mindkét irányba szintén végtelen a számsor.


Fritjof Capra: A fizika taója című könyvében a keleti vallások és a modern fizika kapcsolatáról ír. Erre már sokan utaltak a modern fizika művelői közül, de részleteiben még senki sem tárta fel. A keleti vallásokra (hinduizmus, buddhizmus, taoizmus) a panteisztikus szemlélet a jellemző, ahol a világ teljes egységet képez a személytelen Istenséggel, vagy ősszubsztanciával, és a tárgyi világ összes jelensége: a tér az idő, vagy az anyag csupán ennek a személytelen Istenségnek a különféle megnyilvánulása.


A keleti misztikus esetében a megvilágosodás pedig semmi mást nem jelent, mint hogy a jelenségek mögött meglássa az egységet, vagyis hogy rájöjjön arra, hogy valójában minden egy. Ez a szerző szerint egybevág a modern kvantummechanika eredményeivel, ahol a részecskék, és az általuk generált mezők egyáltalán nem választhatók el egymástól, mint ahogy a relativitáselméletben sem választható el egymástól a tér és az idő.


A modern fizika szemlélete szerint tehát a tárgyi világ objektumai teljes egységet képeznek, hasonlóan a keleti miszticizmushoz, de ellentétben a klasszikus fizika nézeteivel, ahol az anyag tovább nem osztható, gömbszerű atomokból áll. Hasonlóan egybevág a keleti vallások szemléletével a kvantummechanika bizonytalansági elve is.


E szerint a testeket alkotó részecskék helye és állapota, sőt egyáltalán léte nem állapítható meg egyértelműen, hanem csak valószínűsíthető, hogy a tér melyik helyén, és milyen állapotban van. Sőt, tulajdonképpen egyszerre lehet is valahol meg nem is, illetve létezhet is meg nem is. A keleti miszticizmus pontosan ilyen paradoxonokban gondolkodik. A valóság mélyrétegeiről olyan paradox kijelentések olvashatóak a taoista írásokban, mint például, hogy van is, nincs is, itt is van és ott is.


Érdekes az a gondolata is a szerzőnek, hogy a klasszikus fizika és általában a nyugati szemlélet erősen geometrikus jellegű, vagyis térben gondolkodik. Ezzel ellentétben a keleti szemlélet szerint a tér csak az emberi gondolkodás terméke, amely nem látja meg a tárgyi világ egymástól elkülönült jelenségei mögött az egységet.


Ez erősen egybeesik a modern relativitáselmélet szemléletével, ahol a tér nem létezik az anyagtól és az energiától különálló módón, hanem csak azoknak egyfajta relációjaként tartható számon. A hinduizmusban kevésbé, viszont a buddhizmusban és a taoizmusban hangsúlyozottan jelen van az állandó mozgás és változás gondolata, mivel a taoizmus a világ jelenségeit alkotó ősszubsztanciát, a taót dinamikusnak képzeli el. A szerző szerint a modern kvantummechanika szemléletére is hatványozottan jellemző az állandó mozgás-változás jelensége az atomi szinteken.


Sorolhatnám még az analógiákat, amiket a szerző felsorol a keleti vallások és a modern fizika között, de aki elolvassa a könyvet, az úgyis megismeri őket.


Érdemes összevetni Capra-nak a modern fizika és a keleti vallások kapcsolatáról leírt gondolatait azzal, amit én írtam le a modern matematika alapját képező halmazelméletről, amit Cantor alkotott meg. Mint ahogy leírtam az indiai matematikus: Ranganathan úgy fogalmazta meg a valós számok lényegét, hogy a valós számok folytonosan, kontinuusan nyúlnak végig a számvonalon, elválaszthatatlanul összefolyva egymással. Ez egyértelmű megfelelést mutat a keleti vallások panteisztikus szemléletével, ahol a tárgyi világ különálló létezői lényegében mind egységet képeznek a személytelen ősszubsztanciával, amit keleten brahmannak, vagy taónak neveznek.


A valós számok tehát olyan konstrukciók, amelyeknek szerkezete a keleti filozófiák tanításaival állnak analógiában, amelyeket pedig Capra a kvantummechanikával hozott kapcsolatba. Fent részletesen leírtam, hogy egy valós szám egyszerre lehet 0 is, és -0,00000.....1 is. Ez pedig szintén a Capra által leírt taoista paradoxonokkal mutat rokonságot, ahol a valóság mélyrétegeiben lejátszódó folyamatok olykor lehetnek egyszerre létezők és nem létezők is, és ezek a paradoxonok a kvantummechanika jelenségeivel is erős rokonságot mutatnak. Továbbá az a tény, hogy a valós számok egyszerre létezhetnek is, és nem is, egyértelműen dinamikus jellegükre utal, ami a keleti vallásokban, mint például a taoizmusban a lét alapját képező személytelen ősszubsztancia sajátossága.


A modern matematika alapját képező Georg Cantor által kidolgozott halmazelmélet tehát éppúgy a keleti filozófiák tanításaival mutat rokonságot, mint a modern fizika. Ebből pedig az következik, hogy a modern matematika is éppúgy a keleti vallások nyugati leképezése, mint a modern fizika.


     Telcs Máté László: Térmetszetek című cikkében a fraktálok felfedezése előtt kidolgozta a tört dimenziós terek fogalmát, bár nem ugyanazt értette rajta, mint Mandelbrot. A teret Telcs olyan objektumként gondolja el, amely semmilyen irányban nincs határolva, tehát nincs felülete. Így térnek tekinthető a vonal, amely egydimenziós, és sem előrefelé, sem hátrafelé nincs határa. A sík, amelynek előre, hátra, felfelé, lefelé, illetve a kör 360 fokának egyik irányába sincs határa. Továbbá a test, amely háromdimenziós, és a három dimenzió egyik irányában sincsen határa. A vonalat, a síkot, és a testet külön-külön térelemeknek hívja, így tehát a tér olyan térelemnek tekinthető az ő értelmezésében, amelynek az általa birtokolt irányok közül egyik felé sincs felülete, határa.


     Két tér metszése alatt lényegében azt a dimenziószámot érti, amelyet a kétfajta tér találkozásakor közös pontjaik alkotnak. Ha például egy vonalat egy sík felületének irányába tájolunk a háromdimenziós térben, akkor az a pont át fog hatolni a sík felületén, és találkozásuk egy pontot, vagyis nulldimenziós teret fog alkotni. A vonal és a sík metszése tehát a pont. Ugyanígy, ha két egymással párhuzamos sík közül az egyiket 90 fokkal elforgatjuk a háromdimenziós térben, akkor az elforgatott sík oldalával metszeni fogja a másik sík felületét, és találkozásuk egy vonalat: egydimenziós teret fog alkotni. Ha pedig vonal halad át a háromdimenziós téren, akkor közös részük értelemszerűen vonal lesz.


     Két egyenes csak akkor metszi egymást, ha egy síkban fekszenek. Az egyenes és a pont csak akkor metszik egymást, ha egy vonalon fekszenek. Két pont nem metszi egymást csak akkor, ha mind a kettő egy harmadik pontban fekszik stb. Telcs ebből kifolyólag megkülönbözteti a maximális és a minimális metszőteret. A minimális metszőtér az a legalacsonyabb dimenziószámú tér, ahol a két tér metszése még létrejöhet. A maximális metszőtér pedig az a legmagasabb dimenziószámú tér, ahol a két tér metszése már létrejön. A metszést (X)-el jelöli a szerző.


Két tér metszési eredményét olyan térnek tekinthetjük, melynek dimenziószáma a metszésben résztvevő terek dimenziószámának összege kivonva abból a maximális metszőterüknek dimenziószámát. Ha a metszőtér dimenziószámát a képlet elé írt q-val jelöljük, akkor képletünket a következőképpen írhatjuk fel:


     q; Dm X Dn = Dm + n – q


     PÉLDÁK:


     Pont és pont:


    0; D0 X D0 = D0 + 0 = D0


    A metszet pont.


     Sík és sík:


    3; D2 X D2 = D2 + 2 – 3 = D1


    A metszet egyenes.


     Sík és pont:


    2; D2 X D0 = D0 + 2 – 2 = D0


    A metszet pont.


     Sík és egyenes:


    3; D2 X D1 = D2 + 1 – 3 = D0


    A metszet pont.


     Egyenes és egyenes:


    2; D1 X D1 = D1 + 1 – 2 = D0


    A metszet pont.


     Sík és test:


    3; D2 X D3 = D2 + 3 – 3 = D2


    A metszet sík.


     Egyenes és pont


    1; D1 X D0 = D1 + 0 – 1 = D0


    A metszet pont.


     A minimális metszőtérnek magában kell foglalnia az egymást metsző két teret egész terjedelmükben, így dimenziószáma egyiknél sem lehet alacsonyabb. Ennek megfelelően egy vonal nem foglalhat magában egy síkot vagy egy testet, így ezeknek nem lehet metszőtere sem. Egy sík azonban magában foglalhat egy egyenest és egy síkot is, így ezeknek már lehet metszőtere. Vonal és sík maximális metszőtere a háromdimenziós tér, mert ha a vonalat a háromdimenziós térben a sík felülete felé fordítjuk, akkor már metszik egymást. Minimális metszőtere a sík, mert egy sík magában foglalhat teljes terjedelmében egy másik síkot, és egy vonalat is, ha azok párhuzamos irányúak vele, de háromdimenziós teret már nem.


     Ha egy egyenes és egy sík síkban metszik egymást, vagyis ugyanabban a síkban fekszenek, akkor metszésük egyenes lesz, mert a sík az egyenest teljes terjedelmében magába foglalja.


     2; D1 X D2 = D1 + 2 – 2 = D1


     Ha egy sík és egy másik sík minimális metszőterükben: a síkban metszik egymást, akkor metszőterük a sík lesz, mert ha két sík egy síkban fekszik, akkor kölcsönösen magukba foglalják egymás pontjait.


     2; D2 X D2 = D2 + 2 – 2 = D2


     A maximális metszőtérben lefektetett tétel tehát a minimális metszőtérben is igaz. A minimális metszőtér dimenziószáma az egymást metsző két tér közül a magasabb dimenziószámú tér dimenziójának felel meg. A minimális metszőtérben létrejött metszet dimenziószáma az egymást metsző két tér közül az alacsonyabb dimenziószámú tér dimenziójának felel meg. Ha a magasabb dimenziószámú teret Dm-el, az alacsonyabb dimenziószámú teret pedig Dn-el jelöljük, akkor a minimális metszőtér (m) lesz. Képletünk pedig:


     m; Dm X Dn = Dm + n – m = Dn


     Ha egy egyenest egy ponttal ketté metszünk, két félegyenest kapunk, amely, amelyek egymással ellentétes irányban tekinthetők csak végtelennek. Tehát itt törtdimenziós tereket kapunk, amelyek esetünkben 0,5 dimenziós tereknek tekinthetőek. A két féldimenziós tér maximális metszőtere az egydimenziós egyenes lesz, és csak egy közös nulldimenziós pontjuk lesz, ahol ketté metszettük őket, és találkoznak egymással. Ez megfelel a már lefektetett tételünknek, és a képletnek.


     1; D0,5 X D0,5 = D0,5 + 0,5 – 1 = D0








     A két féldimenziós tér minimális metszőterének a félegyenest tekinthetjük és a két félegyenes metszetét úgy kapjuk meg, hogy az egyik félegyenest beleforgatjuk a másik félegyenes pontjaiba, így a két félegyenes közös félegyenesben fog feküdni, és metszetük a félegyenes lesz. Ez is megfelel a képletnek.


     0,5; D0,5 X D0,5 = D0,5 + 0,5 – 0,5 = D0,5


     Ha az egydimenziós teret, tehát az egyenest rá merőlegesen meghosszabbítjuk egyik irányban a végtelenbe, akkor egy félsíkot kapunk, ami több mint az egydimenziós egyenes, de kevesebb, mint a kétdimenziós sík, tehát 1,5 dimenziós teret kapunk, amit egy egydimenziós egyenes határol el. Ha ez a félsík két egyenes metszőtereként van jelen, akkor ez a két egyenes párhuzamos egymással, mert párhuzamos a félsík elhatárolóvonalával, hiszen ha ez nem így lenne, akkor, akkor a két egyenes átmetszené az elhatárolóvonalat, és a kétdimenziós sík metszőterében lenne jelen.


     Két félsík metszése maximális metszőtérben azaz a háromdimenziós térben a pont, hiszen ha párhuzamosak egymással a kétdimenziós térben, akkor közös részük az egyenes lesz, ha viszont az egyiket elforgatjuk a háromdimenziós térben, akkor már csak egy pontban fognak érintkezni.


     3; D1,5 X D1,5 = D1,5 + 1,5 – 3 = D0








     Ennek megfelelően kétdimenziós metszőtérben az egyenes lesz a kettő metszete, ahogy minimális metszőtérben, azaz 1,5 dimenziós térben a félsík lesz a kettő metszőtere. Mindebből a féltér, vagyis a 2,5 dimenziós tér metszőterei és metszetei már kikövetkeztethetőek.


     A gömbfelület nem más, mint azoknak a pontoknak az összessége, amelyek egy álló ponttól egyforma távolságra vannak. Attól függően, hogy milyen térben vesszük fel ezt a távolságot megkülönböztethetünk 0, 1, 2 és 3 dimenziós gömbfelületet. Egy egyenesen kijelölt középponttól mérve csak két pont vehető fel ettől a középponttól egyenlő távolságra (jobbra és balra). Ez a két pont képezi az egydimenziós gömbfelületet. Ehhez hasonló módon képezhető a kétdimenziós körkerület, amely kétdimenziós gömbfelületnek tekinthető, vagy a háromdimenziós gömbfelület. Ha pedig a középpont, és a felületi pontok távolságát nullára csökkentjük, akkor megkapjuk a nulldimenziós gömbfelületet.


     Ha ez a félsík két egyenes metszőtereként van jelen, akkor ez a két egyenes párhuzamos egymással, mert párhuzamos a félsík elhatárolóvonalával, hiszen ha ez nem így lenne, akkor, akkor a két egyenes átmetszené az elhatárolóvonalat, és a kétdimenziós sík metszőterében lenne jelen. A Bólyai-Lobacsevszkij tétel értelmében, miszerint a párhuzamosok a végtelenben metszik egymást, a két párhuzamos egyenes metszete két pont lesz a végtelen két szélső pontján, vagy előbbi definíciónk értelmében egy egydimenziós gömbfelület, vagy ha úgy tetszik egydimenziós tér. A képlet azonban ennek ellent mond.


     1,5; D1 X D1 = D1 + 1 – 1,5 = D0,5


     Ha 2,5 dimenziós térre alkalmazzuk ezt a képletet, akkor is a tételünknek ellentmondó eredményre jutunk. A metszőtér ugyanis nem 2 dimenziós tér, vagy gömbfelület, hanem 1,5 dimenziós tér lesz. Ez az ellentmondás a szerző szerint csak látszólagos. A paradoxont úgy oldja fel, hogy szerinte az egydimenziós gömbfelület, amely két egyenes metszésének tekinthető a 1,5 dimenziós térben több mint a nulldimenziós tér, mert egyenest alkot. Viszont kevesebb, mint az egydimenziós tér, mert a végtelenben mégis csak vannak végpontjai az abszolút végtelen egyenessel szemben, tehát mégis másfajta egyenest alkot. Tehát itt ténylegesen egy 0,5 dimenziós térrel van dolgunk, amely esetünkben nem félegyenes, hanem egy egydimenziós gömbfelület.


     Ugyanígy az kétdimenziós gömbfelület, amely két sík metszésének tekinthető a 2,5 dimenziós térben több mint az egydimenziós tér, mert egyenest alkot. Viszont kevesebb, mint a kétdimenziós tér, mert a végtelenben mégis csak vannak végpontjai az abszolút végtelen síkkal szemben, tehát mégis másfajta síkot alkot. Így itt ténylegesen egy 1,5 dimenziós térrel van dolgunk, amely esetünkben nem félsík, hanem egy kétdimenziós gömbfelület. Így képletünk:


     m + 0,5; Dm X Dm = Dm + m – (m + 0,5) = Dm – 0,5


     Itt azonban m + 0,5 nem adott dimenziószámú teret, hanem m dimenziószámú gömbfelületet jelent. Mindebből pedig az következik, hogy:


     3,5; D3 X D2 = D6 – 3,5 = D2,5


     Ez pedig 3 dimenziós gömbfelületet jelent. Tehát ha a mi háromdimenziós terünkön kívül lenne még egy háromdimenziós tér, és az a mi háromdimenziós terünket a 3,5 dimenziós metszőtérben metszené, akkor egy végtelenül nagy sugarú gömbfelület jönne létre.


     A szerző utolsó megjegyzése szerint pedig ilyen metszetnek léteznie kell. Hiszen terünk minden irányban határtalan, vagyis háromdimenziós végtelensugarú gömbnek tekinthető, ami csak két háromdimenziós tér metszeteként jöhet létre a 3,5 dimenziós térben. Ahogy pedig kép pont vonalat, két vonal síkot, két sík pedig teret alkot, két háromdimenziós térnek a négydimenziós teret kell alkotnia, így tehát léteznie kell a negyedik dimenziónak, aminek pedig ötdimenziós teret kell alkotnia a 4,5 dimenziós metszőtérben és így tovább.


     A cikk célja tehát végeredményben a négydimenziós, és az annál magasabb dimenziószámú terek létezésének bizonyítása volt. Ez a végcél nem sikerült, ugyanis cikk végén elkövetett egy logikai hibát. Ahogy fent olvashattuk annál a résznél, ahol a végtelensugarú egydimenziós gömbfelületet két egymással párhuzamos egyenes metszőtereként értelmezi a 1,5 dimenziós térben, megkülönböztette egymástól a végtelen sugarú egydimenziós gömbfelületet, és az abszolút végtelen egydimenziós egyenest. Abban a részben pedig, ahol a negyedik dimenzió létét igyekszik bizonyítani, megfeledkezik erről a megkülönböztetésről, és azt mondja, hogy mivel a mi háromdimenziós terünk mindenfelé végtelen, és határtalan, mindenképpen egy háromdimenziós gömbfelületet kell alkotnia. Pedig az ő értelmezésében a végtelensugarú háromdimenziós gömb, és az abszolút végtelen háromdimenziós tér is végtelent jelent, csak éppen egymástól különböző végteleneket, akkor pedig fel kell tennünk a kérdést, hogy a végtelen tér miért éppen egy végtelensugarú háromdimenziós gömböt, és miért nem egy abszolút végtelen háromdimenziós teret alkot?


     A célját tehát nem érte el a dolgozat, azonban tett egy nagyon fontos felfedezést, megkülönböztetett egymástól két fajta végtelent, akárcsak Georg Cantor, és az egyiket a körhöz, a másikat pedig az egyeneshez kötötte. Ahhoz, hogy innen tovább tudjunk lépni meg kell vizsgálnunk ezt a két fajta végtelent. A körhöz kapcsolódó végtelent fogjuk először megvizsgálni, ehhez pedig meg kell értenünk, hogy mi is az a Bolyai-Lobacsevszkij féle nemeuklidészi geometria, amely alapján Telcs a körhöz kötődő végtelent elhatárolta az abszolút végtelentől, ahogy azt fent olvashattuk.


     A Bolyai féle geometria alaptétele, hogy a párhuzamosok a végtelenben metszik egymást. Ezt a tételt egy épeszű ember, ha meghallaná, bizonyosan őrültségnek tartaná, vagy olyan mögöttes értelmet gondolna bele, amit ő sohasem érthetne meg, ezért nem is foglalkozna vele többet. Pedig ezt szó szerint kell érteni. Ahhoz, hogy megértsük, hogy hogyan lehet ez az őrültségnek hangzó állítás igaz, ismerkedjük meg először a függvényekkel. A függvényekről nyilván mindenki tanult már az iskolában. A függvény lényegében egy egyértelmű hozzárendelés a matematikában, ahol egy konstans (állandó) értékhez egy változó értéket rendelünk hozzá valamilyen matematikai művelettel, mint például összeadás, vagy kivonás, és ennek értelmében, minden esetben, ha a változó értéke megváltozik, és ha a függvényben definiált műveletet elvégezzük, akkor a kapott eredmény, vagyis a függvény kimenete is megváltozik. Így például definiálhatjuk a következő függvényt:


     f(x) = x + y2


     Itt az (y) melletti 2-es egy hatványt jelent. Tehát (x) a konstans érték (y) pedig változó, ami azért változik, mert folyamatosan négyzetre emeljük, és minden esetben, amikor négyzetre emeljük, és elvégezzük a függvényben definiált műveletet, vagyis hozzáadjuk az x-hez a függvény kimenete változik. Például legyen (x = 3) és (y = 2) Ebben az esetben (3 + 2 a négyzeten = (3 + 4) = 7), a következő menetben (3 + 4 a négyzeten = (3 + 16) = 19), és így tovább. Ezekből a változó függvénykimenetekből aztán érdekes grafikonokat rajzolnak a matematikusok a koordinátarendszerben, amelyek néha különös tulajdonságokkal bírnak. Ilyen például a hiperbola. Hogy a hiperbola milyen függvény eredményeként áll elő az most témánk szempontjából nem érdekes. A lényeg az, hogy egy olyan görbéről van szó, amelynek van egy jobb szára, ami a hiperbola alját elérve elgörbül, és irányt vált, ahogy az ábrán is láthatjuk, majd így lesz egy bal szára, ami felfelé folytatódik.


     A hiperbolának a legfontosabb tulajdonsága az, hogy mind a két szára felfelé irányulva folyamatosan közeledik ahhoz az állapothoz, hogy kiegyenesedjen, egyenessé váljon, de sohasem érheti el ezt az állapotot, tehát lényegében csak a végtelenben válnak egyenessé. Egyes matematikusok elgondolkodtak azon, hogy ha létezik egy olyan görbe, amelynek szárai folyamatosan közelednek ahhoz állapothoz, hogy egyenessé váljanak, de azt sohasem érhetik el, és így csak a végtelenben válnak egyenessé, akkor miért ne lehetne az egyenes olyan objektum, ami ennek a fordítottját hajtja végre, vagyis sohasem tér le az útjáról, nem válik görbévé, csak a végtelenben. Ezt bizonyította be Bolyai János, hogy az egyenes olyan objektum, ami a hiperbola tükörképe, és a végtelenben görbévé válik, elpattan eredeti útjától, és a vele párhuzamos egyenest metszi.








     Ennek a résznek nem volt a célja Bolyai bizonyításának részletes bemutatása, csak annak a szemléltetése, hogy hogyan lehet az, hogy a párhuzamosok a végtelenben metszik egymást. Mit kell észrevennünk a hiperbola, és vele együtt a végtelen egyenes tulajdonságaiban? Egyértelműen a dinamikus jelleget. A hiperbola szárai, mint ahogy láthatjuk folyamatosan és megszakítás nélkül, vagyis dinamikusan közelítenek ahhoz az állapothoz, hogy a végtelenben egyenessé váljanak, ha pedig az egyenes a hiperbola tükörképe, akkor a végtelen egyenes is dinamikusan közelít ahhoz az állapothoz, hogy a végtelenben görbévé váljon és metsze a vele párhuzamos egyenest. Így a pont ahol a két egyenes metszi egymást dinamikusnak tekinthető. Most pedig emlékezzünk vissza, hogy a cikk elején a Cantor által definiált két végtelen közül melyik végtelent ruháztuk fel dinamikus jelleggel a keleti vallásokra hivatkozva. Egyértelműen a megszámlálhatatlanul végtelent. Tehát a megszámlálhatatlanul végtelen a két egymással párhuzamos, végtelen nagyságú térelem metszéseként létrejövő körhöz, vagy gömbhöz köthető. Míg a megszámlálhatóan végtelen az abszolút végtelen térelemekhez köthető, mint az egyenes a sík, vagy a tér.


     Érdekes, hogy Cantor éppen a megszámlálhatatlanul végtelenről állapította meg, hogy az nagyobb, mint a megszámlálhatóan végtelen. Az eddig leírtakból pedig az világlik ki, hogy a megszámlálhatatlanul végtelen két végtelen térelem metszéséből alakul ki, vagyis vannak végpontjai, míg a megszámlálhatóan végtelen abszolút végtelennek tekinthető, és nincsenek végpontjai, vagyis a megszámlálhatóan végtelen a nagyobb. Ez csak a csalóka látszat. Az a tény, hogy a megszámlálhatatlanul végtelennek vannak végpontjai, a végtelen természetéből adódóan nem azt reprezentálja, hogy a megszámlálhatatlanul végtelen a kisebb, hanem, hogy annak van formája, míg a megszámlálhatóan végtelennek nincs.


     Ahhoz ugyanis, hogy a pont dinamikus legyen formába ágyazottnak kell lennie, hiszen csak így vehet fel egyszerre két egymással ellentétes állapotot, ami a kvantummechanikának, és a keleti vallások valóságértelmezésének is a sajátossága. Ha megnézzük a kör kerületét, akkor láthatjuk, hogy ugyanúgy pontokból áll, mint bármelyik egyenes vagy görbe, és ha a középpontból sugarakat húzunk a kör kerületének pontjaihoz, akkor minden sugár más irányba fog mutatni. Tehát a kör kerületét alkotó minden pont más irányú, vagy ha úgy tetszik állapotú. Mivel ezek a pontok összefüggnek, a kör kerületének egy adott pontja más állapotú a tőle jobbra lévő pont szempontjából, és megint más állapotú a tőle balra lévő pont szempontjából. Tehát ahhoz hogy a kör pontjai dinamikusak jelleggel bírjanak, a körnek formával kellett rendelkeznie, minden végpontjának más állapottal kellett rendelkeznie.


    Ezzel ellentétben az egyenesnek, amely a megszámlálhatóan végtelenhez, vagy másként az abszolút végtelenhez köthető, ha két dimenzióba emeljük, akkor négyzetet kapunk, és a négyzet minden oldala egyenes, vagyis minden oldalának pontjai azonos állapotúak, és így lényegében nincs formája. Ez a tulajdonsága hívja életre azt a jelenséget, hogy végtelen nagyságban úgy tűnik nincsenek végpontjai, és nem az, hogy nagyobb, mint a megszámlálhatatlanul végtelen. Nem véletlen talán, hogy a reneszánsz korának egyik legismertebb európai panteista filozófusa: Nicolaus Cusanus, Istent, akit ő a keleti vallásokhoz hasonlóan személytelen ősszubsztanciaként, vagy egyként gondolt el a körhöz, illetve a gömbhöz hasonlította. Míg Aquinói Szent Tamás, akinek teológiája élesen szemben állt a panteizmussal a végtelenről azt állította, hogy nem lehet formája.


     Mindez érdekes dolgokat mond el számunkra a PÍ-ről, ami egyenlő 3, 14-el. A PÍ, mint tudjuk, a kör kerületének, és átmérőjének hányadosa. Mi pedig megállapítottuk, hogy a kör a megszámlálhatatlanul végtelenhez, az egyenes pedig a megszámlálhatóan végtelenhez köthető. Ezek szerint a megszámlálhatatlanul végtelen 3, 14-szer nagyobb lenne, mint a megszámlálhatóan végtelen? Tehát a 3, 14 a megszámlálhatatlanul végtelen és a megszámlálhatóan végtelen aránya? Ez nyilvánvalóan a végtelenben annak sajátos természete miatt nem így van, ez csak egy a végtelenből a végesbe vetített mennyiség.


    A forma tehát kvantumjelenség, ahogy azt fent megállapítottuk, hiszen a négyzet és a kör közül formája csak a körnek van, ami a megszámlálhatatlanul végtelennek, vagyis a kvantummechanikai valóságnak a megjelenítője, mert minden pontja más irányba mutat, és a pontok állapota a körvonalon belül a hozzájuk tartozó két szomszédos pont szuperpozíciója.


   Ahhoz, hogy megértsük miért időztünk ennyit a forma fogalmának kielemzésénél, meg kell ismerkednünk a fraktálok fogalmával. A fraktálok fogalmát a természetben jelen lévő formákra alkalmazzák, mert azok általában szabálytalan formák. A szabálytalan formák úgy kapcsolódnak össze a káoszelmálet tudományával, hogy mivel az a kevésbé előrejelezhető jelenségekkel foglalkozik, az előrejelezhetetlenség mindig összefüggésben van a szabálytalansággal, egész egyszerűen azért, mert a káosszal kapcsolatos jelenségek esetében nem tudunk előre lefektetni olyan szabályokat, amelyek alapján előre megmondható lehetne a folyamat végkimenetele.


   A fraktáloknak vagyis a szabálytalan formáknak van egy sajátos tulajdonságuk, mégpedig az, hogy a forma nyomvonala végtelen hosszúságú, annak ellenére, hogy véges nagyságú síkot, vagy térrészt fog közre. A fraktálokat, ahol végtelen nagyságú sík vagy vonal fog közre egy véges nagyságú térrészt vagy síkot más néven tört dimenziós tereknek is nevezzük. A szabálytalan formák felülete azért végtelen nagyságú, mert a szabálytalanság bármilyen kis méreteknél is megvalósulhat, ezért a szabálytalan formák hosszúsága megmérhetetlen. Vegyük példaként az európai kontinens partvonalát, amely tudvalévőleg szabálytalan alakzat.


   Ha meg akarjuk mérni, hogy milyen hosszú az európai kontinens partvonala, akkor először húzhatunk egy szabályos alakú vonalat Európa köré a térképen, és azt megmérhetjük, de ezzel semmiképpen nem kapunk pontos adatot, hiszen a pontos adathoz külön meg kellene mérnünk minden Európa partvonalából kiálló szikla kerületét is, hiszen a kiálló sziklák kerülete hozzáadódik Európa partvonalának a hosszúságához. Azonban még így sem kapnánk 100 %-ig pontos adatot, hiszen a kiálló sziklák is szabálytalan alakúak, és így lehetnek bennük megkövesedett csigák kagylók, amelyeknek a formái szintén kiállnak a sziklákból, és így ezeknek a kiálló kagyló és csigaalakzatoknak a kerületét is meg kellene mérni a pontos adathoz, és így tovább a végtelenségig. A pontos adatot így soha nem kapnánk meg, mert az csak végtelen nagyságú lehet.


   A fraktálok szemléltetésére különféle mesterséges alakzatokat találtak ki a matematikusok, mint amilyen például a Helge von Koch svéd matematikus által kitalált alakzat, „melynek szerkezeti alapja egy egységnyi oldalú háromszög. A geometriai transzformáció során mindig ugyanazt tesszük a síkidommal: minden oldalára egy egyharmad oldalhosszúságú háromszöget helyezünk, az ábrán látható módon. Ezt elméletileg a végtelenségig ismételhetjük. A végeredmény egy olyan síkidom lesz, amelynek kerülete végtelen, ám területe nem haladja meg a kezdő háromszög köré írható kör területét. Így egy végtelen vonal véges térrészben van jelen. Ez pedig – akárhonnan is nézzük – az euklideszi matematika keretei között képtelenség.”








Fent már kielemeztük, hogy a forma kvantumjelenség, és ha kvantumjelenség, akkor dinamikus, tehát a mozgás jellemzi. A fraktálok esetében pedig a forma dinamikus vonala, felülete végtelenné válik, végtelen nagyságot vesz fel, amit másként úgy is értelmezhetünk, hogy a dinamikus mozgás, tehát az idő tériesedik, térbeli jelleget vesz fel, és így a tér és az idő szoros egységbe kerül, amiből a filozófiában jártas olvasó már egyértelműen rájöhet, hogy a káoszelmélet melyik filozófiai irányzattal áll kapcsolatban. Nyilvánvalóan a Spinozizmussal. A Spinozizmus René Descartes filozófiájából eredeztethető, aki az anyag és az értelem, vagy másként a tér és az idő dualizmusát vallotta, Baruch Spinoza zsidó származású holland filozófus pedig úgy módosította Descartes nézeteit, hogy a tér és az idő egységet képez a világot alkotó panteista ősszubsztanciában, ami nem más, mint maga a természet.


   A tér és az idő egységesítése, tehát az idő tériesítése és a tér időisítése egyben azt is jelentette, hogy az így létrejött panteista ősszubsztanciában nincs mozgás, hiszen a tér a mozdulatlanságot jelképezi, az idő pedig a mozgást, és ha az idő tériesedik, akkor a mozgás lefékeződik, így a spinozai panteista ősszubsztanciát, vagyis a természetet alkotó létezők egyfajta végletes determinizmus rabjai kivétel nélkül mind, éppen a mozgás lehetőségének hiánya miatt. A fraktál felülete, tehát a véges térrészt, vagy síkot közre fogó végtelen nagyságú sík vagy vonal nem más, mint a tér és idő egysége, vagyis a spinozai panteista ősszubsztacia, másként maga a természet.


   Ez nyilvánvalóan így van, hiszen a káoszelméletet értelmezhetjük úgy is, mint a determináció tagadását, mivel éppen azt állítja, hogy a a különféle jelenségek kimenetele az őket determináló feltételek ellenére előrejelezhetetlen. Ez azonban tévedés, mert ezeket a jelenségeket, mivel kimenetelük előrejelezhetetlen, mégis determinálja valami, mégpedig a véletlen, tehát a vak természeti szükségszerűség. Azok a természeti folyamatok, amelyeknek nincs teleológikus céljuk, és működésüket csak a rájuk ható véletlenek írányítanak, azok a természeti szükségszerűség rabjai, tehát determinálva vannak. A determináció alól csak a célra irányulás által szabadulhatunk fel, amit a természetben csak az élő szervezetek esetében van jelen, azok között is a legmagasabb rendű formában az embernél, ahogy azt Jáki Szaniszló bencés szerzetes már leírta „Isten és a kozmológusok című könyvében. A természeti determináció legfőbb filozófiai reprezentánsa pedig Spinoza filozófiája, ahogy azt fent leírtuk. A káoszelmélet tudománya tehát egyértelműen a spinozai filozófiához köthető.


Heller Ágnes: Érték és történelem című könyvében kifejti, hogy Spinoza panteizmusa eltér a többi európai filozófus, mint például Giordano Bruno panteizmusától, mert Giordano is az Isten és a természet egységét vallotta Spinozához hasonlóan, de Giordano rendszerében a természet, ami egy az Istennel rendelkezik a mozgás képességével. A bolygók, a csillagok, az ember mind mozognak Giordano rendszerében.


    Spinozánál, viszont egész egyszerűen nincs jelen az idő, vagyis a mozgás. Spinoza rendszerében az ember és a társadalom is egy a természettel, nem rendelkezik szabad akarattal, amely az önálló tevékenységet, tehát a mozgást lehetővé tenné számára. Teljesen a természet szükségszerűsége alá van rendelve. Mégis jelen van nála a szabadság, de nem a szabad akarat, hanem a szabad szükségszerűség formájában, ami első hallásra paradoxonnak tűnik, és azt jelenti, hogy az ember csak annyiban lehet szabad, amennyiben aláveti magát a természet szükségszerűségének, mert csak így van lehetősége kibontakoztatni az egyéniségét, ha elfogadja azt a szerepet és életutat, amelyet a társadalom, illetve az azt magában foglaló természet kijelölt neki.


    Így az ember úgy mozog, hogy az őt magában foglaló természet mozdulatlan marad, belső szerkezete nem változik, mert az ő része, tehát az ember azt a haaladási irányt követi mozgása során, amit természet szerkezete eleve meghagy neki, és így a Spinozai panteizmusban valóban nincs idő. Tehát mivel a káoszelmélet a Spinozai filozófiához köthető a káosz determinációjában, ahogy spinoza panteizmusának szükségszerűségében is szabadság rejtőzik. A szabadság, a mozgás mintegy beleszövődik a szükségszerűségbe. Ezt a káoszelmélet kutatói is leírták, hogy a káoszban rend rejtőzik, a fraktálok kaotikus alakzataiban a formák sajátos rend alapján ismétlődnek, tehát a rendetlenségben rend van.

Tehát a forma kvantumjelenség, a kvantumvilág tárgyi reprezentációja a kör, a fraktál pedig a kvantumvilág és a tér összeszövődése. Giczi András Béla említett cikkében van egy érdekes rajz, ahol egy kör egy fraktált foglal magában, ahol a fraktál szélei érintkeznek a kör vonalával, de nem haladják túl azt. Tehát a véges kerületű kör egy végtelelenül hosszú kerülettel rendelkező fraktált foglal magában. Ezzel Giczi azt akarta reprezentálni, hogy a különféle dokumentumok, mint például a könyvek könyvtári feldolgozásának szintjein, a feldolgozás által létrejövő új dokumentumok terjedelme elérheti az eredeti dokumentum terjedelmét, de akár meg is haladhatja azt egészen a végtelenségig, de csak úgy, hogy a feldolgozás által létrejövő új dokumentum témája így is csak az eredeti dokumentumról szólhat.



Így például a bibliográfiai leírás alkalmával csak a dokumentum címét, szerzőjét és egy-két egyéb más fontos adatát rögzítjük. A tömörítvény már tartalmazza a dokumentum egész tartalmát csak rövidebb formában. A szemle pedig lényegében a dokumentumról szóló olyan elemzés, ami bármilyen mértékben túlhaladhatja az eredeti dokumentum terjedelmét, de tartalma mindegyiknek csak az eredeti dokumentumról szólhat. Tehát itt esetünkben a kör az eredeti dokumentumot jelképezi, a fraktál pedig a feldolgozás által létrejött új dokumentumot, aminek terjedelme végtelen is lehet, ahogy a fraktál kerülete is végtelen, de a fraktál területe mégis a kör területén belül marad, mint ahogy a feldolgozás által létrejött új dokumentumnak a tartalma is csak csak az eredeti dokumentum tartalmi kereti között maradhat.

Véleményem szerint a körbe zárt fraktál nem csak a dokumentumok tartalmi feldolgozásának, vagyis a könyvtári osztályozásnak a szintjeiről mond el sok mindent, hanem magukról az osztályokról is. Domanovszki Endre a logika fogalma cimű könyvében leírja, hogy a különféle osztályokról, mint például a fákról, épületekről mindig valamiféle fogalmat alkotunk, és ezek a fogalmak magukban foglalják az osztály minden tulajdonságcsoportját, amelyek alapján ezek az osztályok alosztályokra bonthatók.

Az épületek osztálya például olyan tulajdonságcsoportokat tartalmaz, mint csúnya vagy szép, nagy vagy kicsi, lakályos vagy kényelmetlen. Ezek alapján az épületek osztálya alosztályokra bontható, mint: templomok, gyárak, családi házak. Hiszen egy épület templom mivoltát dönti el az, hogy csúnya vagy szép, gyár mivoltát dönti el, hogy nagy vagy kicsi, és családi ház mivoltát dönti el, hogy lakályos vagy kényelmetlen. Ezek között a tulajdonságcsoportok között pedig átmenetek vannak. Lehet egy épület nagyobb és mégnagyobb szebb és mégszebb stb. Tehát az osztályok olyan tulajdonságcsoportokat tartalmaznak, amelyekben egymáshoz hasonlóak, de nem teljesen azonosak, és ezekben a hasonló tulajdonságaikban átmeneteket képeznek egymással.

Így azt is mondhatjuk, hogy az osztály olyan forma, ami nem egységes, mert többféle formát is magára ölthet de csak bizonyos keretek között, mert például az épületnek meg kell öriznie bizonyos alaptulajdonságait, hogy épület maradjon, de ezek az alaptulajdonságai meghatározott keretek között változhatnak, ezeken a kereteken belül viszont általában végtelen sok kombináció lehetséges, hiszen épületből is végtelenül sok fajtát készíthetünk, annak ellenére, hogy alaptulajdonságait meg kell őriznie. A kereteket pedig, amelyeken belül a tulajdonságok változhatnak mindig térnek kell kitöltenie, de véges térnek, hiszen ha például a pókok osztályán belül az egyes pókfajokat lábuk mérete választja el egymástól, akkor a két méret közötti különbséget tér tölti ki, méghozzá véges tér.

Fent megállapítottuk, hogy a forma téri reprezentációja a kör, továbbá, hogy a forma kvantumjelenség, a kvantumvilág alapja pedig a megszámlálhatatlanul végtelenül kicsi, tehát a pont. A fraktál kerületében pedig a kvantumvilágot reprezentáló körvonal, amely végtelenül kicsi pontokból áll, összeszövődik a végtelen nagyságú térrel, az osztály esetében pedig azt mondhatjuk, hogy a tiszta forma, amit a kör kerülete képvisel a véges nagyságú térrel szövődik össze, hiszen ahogy az imént leírtuk az osztály olyan forma, amelynek körvonalai bizonyos véges nagyságú keretek között változhatnak. Így a kérdés már az, hogy fraktálnak tekinthetünk olyan kerületet is, ahol a végtelenül kicsi pontokból álló körvonal nem végtelen, hanem véges nagyságú térrel szövődik össze. Nyilvánvalóan igen, mert a végtelenül kicsi ponthoz képest a véges nagyságú tér is végtelen nagyságú, amit az is jelez, hogy az osztály formájának keretein belül végtelenül sokfajta kombináció lehetséges.

Tehát az osztály olyan fraktál, ahol a végtelenül kicsi pontokból álló körvonal véges méretű térrel szövődik össze, ezért választhatjuk jelképének a körbe zárt fraktált, ami azt jelképezi, hogy a fraktál  kerülete végtelenül nagy ugyan, de mégis a véges forma keretei között marad, mert benne a kvantummechanikai valóság nem végtelen, hanem véges méretű térrel szövődik össze, amit másképp úgy is lefordíthatunk, hogy az osztály formája véges keretek között marad ugyan, de ezeken a kereteken belül végtelenül sok fajta kombináció lehetséges. Így egyértelmű kapcsolatot teremtettünk a káoszelmélet és az osztály fogalma között.

Felhasznált Irodalom:

Domanovszki Endre: A logika fogalma, Budapest, 1976.
 Jáki Szaniszló: Isten és a kozmológusok, ECCLESIA SZÖVETKEZET, 1992.
 Heller Ágnes: Érték és történelem, Budapest, 1969.
 Giczi András Béla: Az osztályozás és a káoszelmélet, Könyvtári Figyelő, 50. évfolyam, 2004. 1. szám.
 Ernst Haeckel: Világproblémák. Népszerű tanulmányok a monisztikus filozófiáról, Budapest, 1905.
 Péter Rózsa: Játék a végtelennel, Tankönyvkiadó, Budapest, 1974.
  Nicolaus Cusanus: A tudós tudatlanság, Kairosz Kiadó.
  Balázsics László: A kör „négyszögesítése” Ufómagazin, 1993/3. sz. 39.
  A kör egyenlete: http://www.bethlen.hu/matek/mathist/forras/Kor_egyenlete.htm
  Telcs Máté László: Térmetszetek (A tér fogalmának bővítése tört dimenziókkal s egyuttal némely geometria fogalom új definitiója), Szeged, 1921.
  Aquinói Szent Tamás: A teológia foglalata, Gede Testvérek, 2002.
  Turay Alfréd: - Kozmológiai antropológia – A katolikus hittudományi főiskolák jegyzetei, Magánkiadás, Szeged, 1987. http://mek.oszk.hu/08700/08794/html/index.htm
  Aquinói Szent Tamás: A világ örökkévalóságáról, Jószöveg Műhely Kiadó, 1998.
  Cullmann, Oscar: Krisztus és az idő - Az őskeresztény idő- és történelemszemlélet, Hermeneutikai Kutatóközpont, 2000.
  Egyetemes Guiness Enciklopédia. Pannon Könyvkiadó, 1992.
 http://hu.wikipedia.org/wiki/Hilber t_Grand_Hotel-paradoxonja
 http://mek.oszk.hu/01600/01683/pdf/01 683-1.pdf
 http://www.math.u-szeged.hu/~hajnal/courses/halmaz99/hipotezis.htm
 http://hps.elte.hu/tdk/dogak/bognarg_doga.pdf
 http://tárogatóhangján.hu/plugins/forum/forum_viewtopic.php?454 Az avantgard és a végtelenedik dimenzió című cikk fórumhozzászólásai.
  Papp Tibor: A Lagrange mechanika alapjai http://rabbot.varazslat.com/mypage/files/lagrange.pdf
 Fritjof Capra: A fizika taója, TERICUM KIADÓ KFT., 1998.

Nincsenek megjegyzések:

Megjegyzés küldése